

 1

Least Squares and Kalman Filtering

R.E. Deakin

Bonbeach VIC, 3196, Australia

Email: randm.deakin@gmail.com

02-Sep-2015

INTRODUCTION

The theory of least squares and its application to adjustment of survey measurements is well known

to every geodesist. The invention of the method is generally attributed to Carl Friedrich Gauss

(1777-1855) but could equally be credited to Adrien-Marie Legendre (1752-1833). Gauss used the

method of least squares to compute the elements of the orbit of the minor planet Ceres and

predicted its position in October 1801 from a few observations made in the previous year. He

published the technique in 1809 in Theoria Motus Corporum Coelestium in Sectionibus Conicis

Solem Ambientium (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic

Sections), mentioning that he had used it since 1795, and also developed what we now know as the

normal law of error, concluding that: "... the most probable system of values of the quantities ... will

be that in which the sum of the squares of the differences between the actually observed and

computed values multiplied by numbers that measure the degree of precision, is a minimum."

(Gauss 1809).

Legendre published an independent development of the technique in Nouvelles méthodes pour la

détermination des orbites des comètes (New methods for the determination of the orbits of comets),

Paris, 1806 and also as the "Méthod des moindres carriés" (Method of Least Squares), published in

the Mémoires de l'Institut national des sciences at arts, vol. 7, pt. 2, Paris, 1810.

After these initial works, the topic was subjected to rigid analysis and by the beginning of the 20th

century was the universal method for the treatment of observations. Merriman (1905) compiled a

list of 408 titles, including 72 books, written on the topic prior to 1877 and publication has

continued unabated since then. Leahy (1974) has an excellent summary of the development of least

squares and clearly identifies the historical connection with mathematical statistics, which it pre-

dates.

The current literature is extensive; the books Observations and Least Squares (Mikhail 1976) and

Analysis and Adjustment of Survey Measurements (Mikhail and Gracie 1981), and lecture notes by

Cross (1992), Krakiwsky (1975) and Wells and Krakiwsky (1971) stand out as the simplest modern

treatments of the topic.

Following Wells and Krakiwsky (1971, pp.8-9), it is interesting to analyse the following quotation

from Gauss' Theoria Motus (Gauss, 1809, p.249).

"If the astronomical observations and other quantities, on which the computation of orbits is based, were

absolutely correct, the elements also, whether deduced from three or four observations, would be strictly

accurate (so far indeed as the motion is supposed to take place exactly according to the laws of KEPLER),

and, therefore, if other observations were used, they might be confirmed, but not corrected. But since all

our measurements and observations are nothing more than approximations to the truth, the same must be

true of all calculations resting upon them, and the highest aim of all computations made concerning concrete

phenomena must be to approximate, as nearly as practicable, to the truth. But this can be accomplished in

no other way than by a suitable combination of more observations than the number absolutely requisite for

the determination of the unknown quantities. This problem can only be properly undertaken when an

approximate knowledge of the orbit has been already attained, which is afterwards to be corrected so as to

satisfy all the observations in the most accurate manner possible."

 2

This single paragraph, written over 200 years ago, embodies the following concepts, which are as

relevant today as they were then.

(i) Mathematical models may be incomplete,

(ii) Physical measurements are inconsistent,

(iii) All that can be expected from computations based on inconsistent measurements are estimates

of the truth,

(iv) Redundant measurements will reduce the effect of measurement inconsistencies,

(v) Initial approximations to the final estimates should be used, and finally,

(vi) Initial approximations should be corrected in such a way as to minimise the inconsistencies

between measurements (by which Gauss meant his method of least squares).

These concepts are also embedded in the Kalman Filter, an estimation process developed by Rudolf

E. Kalman in 1960 (Kalman 1960). The Kalman Filter is a set of equations that can be used to

determine the best estimates of a set of parameters (the state) linked to a mathematical model of a

dynamic measurement system. Kalman’s original development was a (linear) solution to non-linear

maximum likelihood estimation; developed by R.A. Fisher1 and studied by Kolmogorov2 in 1942

and Weiner3 in 1942. One of the first implementations of Kalman’s filter was in the estimation of a

spacecraft’s trajectory and it was incorporated into the Apollo navigation computer. It is now a

‘standard component’ in inertial guidance systems. Kalman filtering is also used in kinematic GPS

and most modern navigation systems.

A Kalman Filter can be thought of as a logical extension of Gauss’ original development of least

squares to estimate unknown parameters of a system. In Gauss’ era and up until the middle 20th

century, systems (whose parameters were to be estimated) were generally static and measurements

unvarying with respect to time. But in this modern era, systems may be dynamic and measurements

made from moving platforms at regular time intervals. The estimation process must link these

measurements and the Kalman filter achieves this; estimating the state of a system (the parameters)

at intervals of time.

These notes contain derivations of formula and worked examples of least squares estimation

(including Kalman filtering). First, there is a general treatment of least squares estimation that is

called here Combined Least Squares which can be shown to encompass the usual solutions known

in surveying and geodesy as adjustment of indirect observations and adjustment of observations

only. This is followed by the derivation of the Kalman Filter equations using the same basic

principles – minimizing sum of squares of weighted residuals. The derivations are concise and the

interested reader is directed to more extensive developments as references.

1 Sir Ronald Aylmer Fisher (1890–1962) was an English statistician and mathematician known for his important

contributions to statistics, including the analysis of variance, maximum likelihood, fiducial inference, and the derivation

of various sampling distributions.

2 A.N. Kolmogorov (1903–1987) was a 20th-century Russian mathematician who made significant contributions to the

mathematics of probability theory, topology, classical mechanics and information theory.

3 Norbert Wiener (1894–1964) was an American child prodigy who became a mathematician and philosopher and

Professor of Mathematics at MIT. Wiener was an early researcher in stochastic and noise processes, contributing work

relevant to electronic engineering, electronic communication, and control systems.

 3

COMBINED LEAST SQUARES

A common treatment of the least squares technique of estimation starts with simple linear

mathematical models having observations (or measurements) as explicit functions of parameters

with non-linear models developed as extensions. This adjustment technique is generally described

as adjustment of indirect observations (also called parametric least squares). Cases where the

mathematical models contain only measurements are usually treated separately and this technique is

often described as adjustment of observations only (also called condition equations). Both

techniques are of course particular cases of a general technique called here Combined Least

Squares, the solution of which is set out below. This general technique also assumes that the

parameters, if any, can be treated as ‘observables’, i.e., they have an a priori covariance matrix.

This concept allows the general technique to be adapted to sequential processing of data where

parameters are updated by the addition of new observations.

In general, least squares solutions require iteration, since a non-linear model is assumed. The

iterative process is explained below. In addition, a proper treatment of covariance propagation is

presented and cofactor matrices given for all the computed and derived quantities in the adjustment

process. Finally, the particular cases of the general least squares technique are described.

Consider the following set of non-linear equations representing the mathematical model in an

adjustment

 ()ˆ ˆ,F =l x 0 (1)

where l is a vector of n observations and x is a vector of u parameters; l̂ and x̂ referring to

estimates derived from the least squares process such that

 ˆ ˆ and δ= + = +l l v x x x (2)

where v is a vector of residuals or small corrections and δ x is a vector of small corrections. The

observations l have an a priori cofactor matrix
ll

Q containing estimates of the variances and

covariances of the observations. In many cases the observations are independent and
ll

Q is

diagonal. In this general technique, the parameters x are treated as ‘observables’ with a full a priori

cofactor matrix
xx

Q . The diagonal elements of
xx

Q contain estimates of variances of the

parameters and the off-diagonal elements contain estimates of the covariances between parameters.

Cofactor matrices
ll

Q and
xx

Q are related to the covariance matrices
ll

ΣΣΣΣ and
xx

ΣΣΣΣ by the variance

factor 2

0σ

 2 2

0 0
ll ll xx xx

σ σ= =Q QΣ ΣΣ ΣΣ ΣΣ Σ (3)

Also, weight matrices W are useful and are defined, in general, as the inverse of cofactor matrices

 1−=W Q (4)

and covariance, cofactor and weight matrices are all symmetric, hence andT T= =Q Q W W

where the superscript T denotes the transpose of the matrix.

Note also, that in this development where Q and W are written without subscripts they refer to the

observations, i.e., and
ll ll

= =Q Q W W

 4

Linearizing (1) using Taylor's theorem and ignoring 2nd and higher-order terms, gives

 () () () ()
, ,

ˆ ˆˆ ˆ, ,
ˆ ˆ

l x l x

F F
F F

∂ ∂
= + − + − =

∂∂
l x l x l l x x 0

xl
 (5)

and with ˆ= −v l l and ˆδ = −x x x from (2) we may write the linearized model in symbolic form as

 δ+ =Av B x f (6)

Equation (6) represents a system of m equations that will be used to estimate the u parameters from

n observations. It is assumed that this is a redundant system where

 n m u≥ ≥ (7)

and r m u= − (8)

is the redundancy or degrees of freedom.

In equation (6) the coefficient matrices A and B are design matrices containing partial derivatives of

the function evaluated using the observations l and the "observed" parameters x.

 , ,

, ,

ˆ ˆ

m n m u

l x l x

F F∂ ∂
= =

∂∂
A B

xl
 (9)

The vector f contains m numeric terms calculated from the functional model using l and x.

 (){ },1 ,m F= −f l x (10)

THE COMBINED LEAST SQUARES SOLUTION

The least squares solution of (6), i.e., the solution which makes the sums of the squares of the

weighted residuals a minimum, is obtained by minimizing the scalar function ϕ

 ()2T T T

xxϕ δ δ δ= + − + −v W v x W x k Av B x f (11)

where k is a vector of m Lagrange multipliers which are at this stage unknown and the 2 is added

for convenience later on.

ϕ is a minimum when its derivatives with respect to v and δ x are equated to zero, i.e.

 2 2 and 2 2T T T T T T

xx

ϕ ϕ
δ

δ

∂ ∂
= − = = − =

∂ ∂
v W k A 0 x W k B 0

v x

These equations can be simplified by dividing both sides by two, transposing and changing signs to

give

 and T T

xx
δ− + = − + =Wv A k 0 W x B k 0 (12)

Equations (12) can be combined with (6) and arranged in matrix form as

 5

T

T

xx
δ

 −    
     =     
     −     

W A 0 v 0

A 0 B k f

0 B W x 0

 (13)

Equation (13) can be solved by the following reduction process given by Cross (1992, pp. 22-23).

Consider the partitioned matrix equation =P y u given as

11 12 1 1

21 22 2 2

     
=     

     

P P y u

P P y u
 (14)

which can be expanded to give

 11 1 12 2 1+ =P y P y u

or ()1

1 11 1 12 2

−= −y P u P y (15)

Eliminating 1y by substituting (15) into (14) gives

()1

11 12 111 1 12 2

21 22 22

− −   
=    

     

P P uP u P y

P P uy

Expanding the matrix equation gives

()1

21 11 1 12 2 22 2 2

1 1

21 11 1 21 11 12 2 22 2 2

−

− −

− + =

− + =

P P u P y P y u

P P u P P P y P y u

and an expression for 2y is given by

 ()1 1

22 21 11 12 2 2 21 11 1

− −− = −P P P P y u P P u (16)

Now partitioning (13) in the same way as (14) gives

T

T

xx
δ

 −    
     =     
     −     

W A 0 v 0

A 0 B k f

0 B W x 0

 (17)

and then eliminating v by applying (16) yields

 []1 1T

T

xx δ
− −

          
     − − = − −               −          

0 B A k f A
W A 0 W 0

B W 0 x 0 0

Remembering that 1−=Q W the equation can be simplified as

T

T

xx
δ

     
=     

−      

k fAQA B

x 0B W
 (18)

 6

Again, applying (16) to the partitioned equation (18) gives

 ()() ()
1 1

T T T T

xx
δ

− −

− − = −W B AQA B x 0 B AQA f

and re-arranging gives the normal equations

 ()() ()
1 1

T T T T

xx
δ

− −

+ =B AQA B W x B AQA f (19)

Mikhail (1976, p. 114) simplifies (19) by introducing equivalent observations
e

l where

e

=l A l (20)

Applying the matrix rule for cofactor propagation (Mikhail 1976, pp. 76-79) gives the cofactor

matrix of the equivalent observations as

 T

e
=Q AQA (21)

With the usual relationship between weight matrices and cofactor matrices, [see (4)], we may write

 ()
1

1 T

e e

−−= =W Q AQA (22)

Using (22) in (19) gives the normal equations as

 ()T T

e xx e
δ+ =B W B W x B W f (23)

with the auxiliaries N and t as

 T T

e e
= =N B W B t B W f (24)

The vector of corrections δx is given by

 ()
1

xx
δ

−
= +x N W t (25)

The reduction process applied to (13) also yields the vector of Lagrange multipliers k

 () () ()
1

T

e
δ δ

−

= − = −k AQA f B x W f B x (26)

and the vector of residuals v is obtained from (12) as

 1 T T−= =v W A k QA k (27)

THE ITERATIVE PROCESS OF SOLUTION

Remembering that ˆ δ= +x x x , where x is the vector of a priori estimates of the parameters, δx is a

vector of corrections and x̂ is the least squares estimate of the parameters.

At the beginning of the iterative solution, it can be assumed that x̂ equals the a priori estimates 1x

and a set of corrections 1δx computed. These are added to 1x giving an updated set 2x . A and B

are recalculated and a new weight matrix
xx

W computed by cofactor propagation.

 7

The corrections are computed again, and the whole process cycles through until the corrections

reach some predetermined value, which terminates the process.

 1
ˆ

n n n
δ+ = +x x x (28)

COFACTOR MATRICES

Derivation of the cofactor matrices is a lengthy process and the results given below can be found in

Mikhail (1976, pp. 349-359)

Cofactor Matrix for x̂ ()
1

ˆˆxx xx

−
= +Q N W (29)

Cofactor Matrix for l̂ ()
1

ˆ̂

T T T

e xx e ell

−
= + + −Q Q QA W B N W B W AQ QA W AQ (30)

Cofactor Matrix for δx ()
1

xx xxδ δ

−
= +

x x
Q N W NQ (31)

Cofactor Matrix for v ˆˆvv ll
= −Q Q Q (32)

Covariance Matrix ˆ ˆxx
ΣΣΣΣ 2

ˆ ˆ ˆ ˆ0xx xxσ= QΣΣΣΣ (33)

The estimated variance factor is 2

0

T T

xx

r

δ δ
σ

+
=

v Wv x W x
 (34)

where the degrees of freedom r are
x

r m u u= − + (35)

m is the number of equations used to estimate the u parameters from n observations.
x

u is the

number of weighted parameters. [(35) is given by Krakiwsky (1975, p.17, eq. 2-62) who notes that

it is an approximation only and directs the reader to Bossler (1972) for a complete and rigorous

treatment.]

GENERATION OF THE STANDARD LEAST SQUARES CASES

Combined Case with Weighted Parameters (); ; ; xxA B W W

 1 with and
xx

δ −+ = = ≠Av B x f W Q W 0

The general case of a non-linear implicit model with weighted parameters treated as observables is

known as the Combined Case with Weighted Parameters. It has a solution given by the following

equations.

 ()
1

xx
δ

−
= +x N W t (36)

with ()
1

1 T T T

e e e e

−−= = = =N B W B t B W f W Q AQA (37)

 ˆ δ= +x x x (38)

 8

 ()e δ= −k W f B x (39)

 1 T T−= =v W A k QA k (40)

 ˆ = +l l v (41)

 ()
1

ˆˆxx xx

−
= +Q N W (42)

 ()
1

ˆ̂

T T T

e xx e ell

−
= + + −Q Q QA W B N W B W AQ QA W AQ (43)

 ˆ̂vv ll
= −Q Q Q (44)

 2

0

T T T T

xx xx

x
r m u u

δ δ δ δ
σ

+ +
= =

− +

v Wv x W x v Wv x W x
 (45)

 2 2 2

ˆˆ ˆˆˆ ˆ ˆ ˆ0 0 0
xx xx vv vv ll ll

σ σ σ= = =Q Q QΣ Σ ΣΣ Σ ΣΣ Σ ΣΣ Σ Σ (46)

Combined Case with ; ; ;
xx

=A B W W 0

 1 with and
xx

δ −+ = = =Av B x f W Q W 0

The Combined Case is a non-linear implicit mathematical model with no weights on the parameters.

The set of equations for the solution is deduced from the Combined Case with Weighted Parameters

by considering that if there are no weights then and
xx xx

= =W 0 Q 0 . This implies that x is a

constant vector (denoted by 0x) of approximate values of the parameters, and partial derivatives

with respect to 0x are undefined. Substituting these two null matrices and the constant vector
0=x x into equations (36) to (45) gives the following results.

 1δ −=x N t (47)

with () ()
1

0 0 1 , T T T

e e e e
F

−−= = = − = =N B W B t B W f f x l W Q AQA (48)

 0ˆ δ= +x x x (49)

 ()e δ= −k W f B x (50)

 1 T T−= =v W A k QA k (51)

 ˆ = +l l v (52)

 1

ˆˆxxδ δ
−= =x xQ Q N (53)

 1

ˆ̂

T T T

e e ell

−= + −Q Q QA W B N B W AQ QA W AQ (54)

 9

 ˆ̂vv ll
= −Q Q Q (55)

 2

0

T T

r m u
σ = =

−

v Wv v Wv
 (56)

 2 2 2

ˆˆ ˆˆˆ ˆ ˆ ˆ0 0 0
xx xx vv vv ll ll

σ σ σ= = =Q Q QΣ Σ ΣΣ Σ ΣΣ Σ ΣΣ Σ Σ (57)

Indirect Least Squares (Parametric Case) with ; ; ;
xx

= =A I B W W 0

 1 with and
xx

δ −+ = = =v B x f W Q W 0

Indirect Least Squares (Parametric Case) is a mathematical model with the observations l explicitly

expressed by some non-linear function of the parameters x only. This implies that the design matrix

A is equal to the identity matrix I. Setting =A I in the Combined Case (with no weights) leads to

the following equations.

 1δ −=x N t (58)

with ()0 0 ,T T F= = = −N B WB t B Wf f x l (59)

 0ˆ δ= +x x x (60)

 δ= −v f B x (61)

 ˆ = +l l v (62)

 1

ˆˆxxδ δ
−= =x xQ Q N (63)

 1 T

vv

−= −Q Q BN B (64)

 1

ˆ̂

T

ll

−=Q B N B (65)

 2

0

T T

r n u
σ = =

−

v Wv v Wv
 (66)

 2 2 2

ˆˆ ˆˆˆ ˆ ˆ ˆ0 0 0
xx xx vv vv ll ll

σ σ σ= = =Q Q QΣ Σ ΣΣ Σ ΣΣ Σ ΣΣ Σ Σ (67)

 10

Observations Only Least Squares (Condition Case) with ; ; ;
xx

= =A B 0 W W 0

 1 with and
xx

−= = ≠Av f W Q W 0

Observations Only Least Squares (Condition Case) is characterized by a non-linear model

consisting of observations only. Setting =B 0 in the Combined Case (with no weights) leads to the

following equations.

e

=k W f (68)

with () ()
1

1 T

e e
F

−−= = = −W Q AQA f l (69)

 1 T T−= =v W A k QA k (70)

 ˆ = +l l v (71)

 ˆ̂

T

ell
= −Q Q QA W AQ (72)

 ˆ̂vv ll
= −Q Q Q (73)

 2

0

T T

r m
σ = =

v Wv v Wv
 (74)

 2 2

ˆˆ ˆˆ0 0
vv vv ll ll

σ σ= =Q QΣ ΣΣ ΣΣ ΣΣ Σ (75)

EXAMPLES

The following simple examples of least squares solutions (or least squares estimations) show how

appropriate mathematical models are developed and systems of (matrix) equations solved to give

estimates of parameters and/or residuals. MATLAB functions are given in the Appendix and show

how these solutions may be programmed.

Examples 1 and 2 are both fitting straight lines y b x c= + through data points. This is also known

as linear regression. Example 1 assumes that the x-values are error free and the y-values are the

measurements (subject to error) with associated residuals and weights reflecting the precision. The

least squares solution for parameters b (slope) and c (y-intercept) is obtained using Indirect Least

Squares (Parametric case). Example 2 assumes that both the x and y-values are measurements (with

associated residuals) with estimates of precision (variances and covariances). The least squares

solution for the parameters b and c uses Combined Least Squares. This technique is rarely

explained in textbooks on the topic.

Example 3 is the solution of a small level network using two methods; Observations Only Least

Squares (Condition case) and Indirect Least Squares (Parametric case)

Example 4 is position fix from measured distances to beacons of known coordinates using Indirect

Least Squares

 11

Example 1: Line of Best Fit

y

C

y =
 b x +

 c

1 2

3

4

5

x

• •

•

•

•

 Figure 1. Line of Best Fit through data points 1 to 5

The line of best fit shown in the Figure 1 has the equation y b x c= + where b is the slope of the

line 2 1

2 1

tan
y y

b
x x

θ
 −

= = 
− 

 and c is the intercept of the line on the y axis.

b and c are the parameters and the data points are assumed to accord with the mathematical model

y b x c= + and the x,y coordinate pairs of each data point are considered as indirect measurements

of the parameters m and c of the mathematical model. The column of weights reflects the differing

precision associated with the measured y-values (large weight equals small precision) and the x-

values are considered to be error free.

Now, since the x-values are error-free, the residuals v are associated with the measured y-values

only, which leads to an observation equation of the form

k k k

y v b x c+ = + (76)

This equation can be re-arranged into a form where the ‘unknowns’ (vk, b, c) are on the left-hand

side of the equals sign and the ‘knowns’ (yk) are on the right-hand side

k k k

v b x c y− − = (77)

For the 5 data points there are n = 5 equations in u = 2 parameters

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

v x b c y

v x b c y

v x b c y

v x b c y

v x b c y

− − = −

− − = −

− − = −

− − = −

− − = −

 (78)

Point (mm) (mm) weight

1 40.0 24.0 2

2 15.0 24.0 5

3 10.0 12.0 7

4 38.0 15.0 3

5 67.0 30.0 3

x y w

− −

− −

−

 12

These can be written in the matrix form () () () (),1 , ,1 ,1n n u u n
+ =v B x f (Parametric Case:

; ; ;
xx

= =A I B W W 0) as

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

1

1

1

1

1

v x y

v x y
b

v x y
c

v x y

v x y

− − −     
     − − −      
     + − − = − 
      

− − −     
     − − −     

 (79)

The numerical values in the matrices B, f and W are

 () () (), ,1 ,

40 1 24 2 0 0 0 0

15 1 24 0 5 0 0 0

 10 1 12 0 0 7 0 0

38 1 15 0 0 0 3 0

67 1 30 0 0 0 0 3

n u n n n

−     
     −     
     = = =− −
     
− − −     
     − − −     

B f W

The solution is given by equations (58) to (67). In this particular case, the solution for the vector x

(containing the parameters b and c) is direct; no iteration and no approximate values required.

The solution is given by

 () () () () () () () (), , , , ,1 , , ,1

22824.00 230.00 10620.00

230.00 20.00 117.00

T T

u u u n n n n u u u n n n n

   
= = = =   −   

N B W B t B W f

and () () ()
1

,1 , ,1

4.9556e-05 5.6990e-04 10620.00 0.592968

5.6990e-04 5.6554e-02 117.00 12.669131
u u u u

b

c

− −       
= = = =       − − −       

x N t

The slope of the line tan 0.592968b θ= = and 30 40 00θ ′ ′′= � measured anticlockwise from the x-

axis and the line cuts the y-axis at –12.669131

The residuals (mm) are (),1

 12.387849

 2.436350

 5.260548

 5.136350

 2.940279

n

 
 
 
 =
 
 
 

−

− 

−



v

A MATLAB program least_squares.m is given in the Appendix and can be used to solve parametric

least squares problems given the coefficient matrix B, the vector of numeric terms f and a vector of

weights w that are the elements of a diagonal matrix W. This program requires a data file (an

ASCII text file) with an extension .txt containing the elements of B, f and w.

The output from the program containing estimates of parameters and residuals and relevant cofactor

matrices is placed in a text file with the extension .out in the same directory as the data file.

The Appendix shows the input and output files Example_1.txt and Example_1.out

 13

Example 2: Line of Best Fit – correlated data of varying precision

y

C

y = b x + c

1

2

3

4

5

x

• •

•

•

•

 Figure 2. Line of Best Fit through data points 1 to 5 that have varying precision

The line of best fit shown in the Figure 2 has the equation y b x c= + where b is the slope of the

line 2 1

2 1

tan
y y

b
x x

θ
 −

= = 
− 

 and c is the intercept of the line on the y axis.

b and c are the parameters and the data points are assumed to accord with the mathematical model

y b x c= + and the x,y coordinate pairs of each data point are considered as indirect measurements

of the parameters b and c of the mathematical model.

The data points in Figure 2 have varying precision indicated by error ellipses and the size, shape

and orientation of the error ellipses are functions of the variances and covariance of the coordinates

at each point. As a general rule, a point with a small error ellipse is more precisely located than a

point with a large error ellipse.

The cofactor matrix Q of the n = 10 measurements (the coordinates) has the following form

 ()

1 1 1

1 1 1

2 2 2

2 2 2

5 5 5

5 5 5

2

y

2

y

2

y

2

, y

2

y

2

y

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x x

x y

x x

n n x y

x x

x y

s s

s s

s s

s s

s s

s s

 
 
 
 
 
 =
 
 
 
 
 
 

Q

�

�

�

�

� �

� � � �

�

Where 2 2,
k kx ys s are estimates of the variances 2

x
σ and 2

yσ respectively and yk kx
s is an estimate of the

covariance
xy

σ . ,
x y

s s are estimates of the standard deviations ,
x y

σ σ and standard deviation is the

positive square root of the variance.

Point (mm) (mm)

1 40.0 24.0

2 15.0 24.0

3 10.0 12.0

4 38.0 15.0

5 67.0 30.0

x y

− −

− −

−

 14

Note that correlation
xy

xy

x y

s

s s
ρ = and 1 1

xy
ρ− ≤ ≤

The actual numeric values (mm2) for each point are:

 (),

2 0.5

0.5 3

8 4

4 5

8 3

3 7

1 0.5

0.5 2

6 1

1 12

n n

 
 
 
 −
 

− 
 −

=  
− 

 
 
 
 
 
  

Q

Assuming that residuals
x

v and
y

v are associated with both the x and y measurements (the

coordinate pairs) the observation equation is

 ()
k kk y k x

y v b x v c+ = + + (80)

Let 0
b b bδ= + (81)

where 0
b is an approximate value and bδ is a small correction and substituting (81) into (80) gives

()()0

0 0

k k

k k

k y k x

k x k x

y v b b x v c

b x b v x b v b c

δ

δ δ

+ = + + +

= + + + + (82)

But, since
kx

v and bδ are both small, then the product 0
kx

v bδ ≈ in (82) and we write the

observation equation as

 0 0

k kk y k x ky v b x b v x b cδ+ = + + + (83)

Re-arranging the observation equation so that unknown quantities are on the left-hand-side and

known quantities are on the right-hand-side of the equals sign gives

 0 0

k kx y k k kb v v x b c b x yδ− + − − = − (84)

For the 5 data pairs (10n = observations), the (5m =) observation equations for the (2u =)

parameters are

 15

1 1

2 2

3 3

4 4

5 5

0 0

1 1 1

0 0

2 2 2

0 0

3 3 3

0 0

4 4 4

0 0

5 5 5

x y

x y

x y

x y

x y

b v v x b c b x y

b v v x b c b x y

b v v x b c b x y

b v v x b c b x y

b v v x b c b x y

δ

δ

δ

δ

δ

− + − − = −

− + − − = −

− + − − = −

− + − − = −

− + − − = −

These can be written in the matrix form () () () () (), ,1 , ,1 ,1m n n m u u m
δ+ =A v B x f (Combined Case:

; ; ;
xx

=A B W W 0) as

1

1

2 00
1 1 1

2 00
2

30
3

30
4

40
5

4

5

5

11 0 0 0 0 0 0 0 0

10 0 1 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0

10 0 0 0 0 0 1 0 0

10 0 0 0 0 0 0 0 1

x

y

x

y

x

y

x

y

x

y

v

v

v
x b x yb

v
x b xb

v b
xb

v c
xb

v
xb

v

v

v

δ

 
 
 
 

− −  −−   
     − −−      
     + − − =−  
      

− −−    
     − −−     

 
 
  

2 2

0

3 3

0

4 4

0

5 5

y

b x y

b x y

b x y

 
 

− 
 −
 

− 
 − 

The least squares solution for the parameters bδ and c and the related precision estimation are

given by equations (47) to (57). The solution is iterative, terminating when bδ reaches a

sufficiently small value.

For a first iteration with an approximate value 0 0.55b = the numerical values in the matrices A, B

and f are

 (),

0.55 1 0 0 0 0 0 0 0 0

0 0 0.55 1 0 0 0 0 0 0

0 0 0 0 0.55 1 0 0 0 0

0 0 0 0 0 0 0.55 1 0 0

0 0 0 0 0 0 0 0 0.55 1

m n

− 
 − 
 = −
 

− 
 − 

A

 () (), ,1

40 1 2.00

15 1 15.75

 10 1 17.50

38 1 5.90

67 1 6.85

m u m

−   
   −   
   = =− −
   
− −   
   − −   

B f

and the equivalent weight matrix () () () ()()
1

, , , ,

T

e m m m n n n n m

−

=W A Q A is

 16

 (),

0.327332242 0 0 0 0

0 0.084602369 0 0 0

0 0 0.078616352

0.

0 0

0 0 0 0.570613409 0

0 0 0 0 078647267

e m m

 
 
 
 =
 
 
  

W

The matrices N and t are

() () () ()

() () () ()

, , , ,

,1 , , ,1

1727.642100568 13.376514747

13.376514747 1.139811640

131.610662196

7.268290852

T

u u u m e m m m u

T

u u m e m m m

 
= =  

 

− 
= =  − 

N B W B

t B W f

The solutions are

 () () ()
1

,1 , ,1

0.029485717

6.030711114
u u u u

b

c

δ
δ − −   

= = =   −   
x N t and 0 0.520514283b b bδ= + =

A second iteration with 0 0.520514283b = gives the solutions as

 () () ()
1

,1 , ,1

0.000359159

6.083116111
u u u u

b

c

δ
δ −    

= = =   −   
x N t and 0 0.520873442b b bδ= + =

A third iteration with 0 0.520873442b = gives the solutions as

 () () ()
1

,1 , ,1

0.000004552

6.082457028
u u u u

b

c

δ
δ − −   

= = =   −   
x N t and 0 0.520868890b b bδ= + =

A fourth (and last) iteration with 0 0.520868890b = gives the solutions as

 () () ()
1

,1 , ,1

0.000000058

6.082465379
u u u u

b

c

δ
δ −    

= = =   −   
x N t and 0 0.520868948b b bδ= + =

and the residuals () () () ()

1

1

2

2

3

,1 , , ,1
3

4

4

5

5

0.523

2.645

7.279

6.313

6.485

7.748

0.015

1.281

0.200

1.080

x

y

x

y

xT

n n n m n n

y

x

y

x

y

v

v

v

v

v

v

v

v

v

v

   
   −   
   −
   
   
   −
 = = =  
   
   
   

−   
   
   
   −  

v Q A k

 17

A MATLAB program linear_regression_CLS.m is given in the Appendix that solves Linear

Regression problems using Combined Least Squares. This program requires a data file (an ASCII

text file) with an extension .txt containing data for each point (and there should be at least three

points). each line of the data file contains a point number, x-coordinate, sx (standard deviation of

the x-coordinate), y-coordinate, sy (standard deviation of the y-coordinate) and sxy (the covariance

between the x and y coordinates).

The output from the program containing estimates of parameters and residuals and relevant cofactor

matrices is placed in a text file with the extension .out in the same directory as the data file.

The Appendix shows the input and output files Example_2.txt and Example_2.out

Example 3: Level Network Adjustment

Line Height diff s.d.

1 1.450 0.005

2 0.405 0.002

3 0.655 0.002

4 1.070 0.002

5 0.145 0.005

 Figure 3. Level Network

Figure 3 is a schematic diagram of a small level network connecting points A, B and C to PM’s 729

and 731 of known Australian Height datum (AHD) Reduced Levels (RL’s). On the diagram, the

arrows indicate the direction of rise; i.e., A is lower than PM729 and C. And B is higher than A, C

and PM731. The height differences and standard deviations (metres) are shown in the table to the

right of the diagram.

We will adjust this level network using two different methods; firstly using Observations Only least

squares (Condition case) and secondly using Indirect least squares (Parametric case).

Observations Only Least Squares

There are n =5 observations (measured height differences) and a minimum of 0 3n = observations

are required to fix the RL’s of A, B and C. Hence there are 0 2m n n= − = redundant measurements,

which equals the number of independent condition equations. Denoting the observations as 1 2, ,l l …

etc. these two conditions are

() ()

()
5 5 4 4 1 1 729 731

2 2 3 3 4 4

 RL RL

0

l v l v l v

l v l v l v

+ − + + + = −

+ + + − + =
 (85)

These equations may be re-arranged with the residuals on the left-hand side of the equals sign and

numeric values on the right-hand side

()

()
1 4 5 1 4 5

2 3 4 2 3 4

0.530

0

v v v l l l

v v v l l l

− + = − − +

+ − = − + −

⊗⊗

•

•

•

1

5

3

4

2

A

B

C

PM 729
PM 731

R
L 2

3.
66

0

R
L 2

3.
13

0

 18

The condition equations in matrix form () () (), ,1 ,1m n n m
=A v f are

1

2

3

4

5

1 0 0 1 1 0.005

0 1 1 1 0 0.010

v

v

v

v

v

 
 
 −   
  =   −     
 
  

 (86)

The cofactor matrix Q containing estimates of variances and covariances is (upper-triangular part)

 ()

()

()

()

()

()

2

2

2

,

2

2

0.005 0 0 0 0

0.002 0 0 0

0.002 0 0

0.002 0

0.005

n n

 
 
 
 

=  
 
 
 
 

Q (87)

The solution for the residuals v, adjusted observations ˆ = +l l v and cofactor matrices ˆ̂ and
vvll

Q Q

are given by equations (68) to (75). Using (86) and (87) the relevant equations are

() () () ()()

() () ()

1

, , , ,

,1 , ,1

18987.341772 6329.113924

6329.113924 85443.037975

31.645570

822.784810

T

e m m m n n n n m

m e m m m

− − 
= =  − 

 
= =  

 

W A Q A

k W f

 (88)

 () () () () () () (),1 , , ,1 ,1 ,1 ,1

0.000791 1.451

0.003291 0.408

ˆ 0.003291 0.658

0.003418 1.067

0.000791 0.146

T

n n n n m m n n n

   
   
   
   = = = + =
   
−   
      

v Q A k l l v (89)

The adjusted RL’s are: A = 22.209 m, B = 23.276 m, C = 22.617 m.

The cofactor matrices of the adjusted height differences and residuals are (upper-triangular part)

 ˆ̂

1.3133e-05 6.3291e-07 6.3291e-07 1.2658e-06 1.1867e-05

2.6329e-06 1.3671e-06 1.2658e-06 6.3291e-07

2.6329e-06 1.2658e-06 6.3291e-07

2.5316e-06 1.2658e-06

1.3133e-05

ll

− 
 − 
 =
 
 
  

Q (90)

 19

1.1867e-05 6.3291e-07 6.3291e-07 1.2658e-06 1.1867e-05

1.3671e-06 1.3671e-06 1.2658e-06 6.3291e-07

1.3671e-06 1.2658e-06 6.3291e-07

1.4684e-06 1.2658e-06

1.1867e-05

vv

− − − 
 − − 
 = − −
 

− 
  

Q (91)

The variance factor is 2 2

0 4.193038 m
T

m
σ = =

v Wv
 (92)

Precision estimates of the adjusted RL’s of A, B and C can be made in the following way.

The RL’s are obtained from adjusted observations as

1

5 4 731 2 731

5 731 7313

7315 3 731 4

5

ˆ

ˆ ˆ ˆRL RL RL 0 0 0 1 1 RL

ˆ ˆRL RL or RL 0 0 0 0 1 RL

ˆ ˆ RL 0 0 1 0 1 RLˆRL RL

ˆ

A A

B B

CC

l

l l l

l l

l l l

l

 
 

= − +  −     
      = + = +      
      −= − +       
 
 

 (93)

These equations can be written in a matrix form ˆ= +y Cl d and using Propagation of Variances for

linear functions we may write the cofactor matrix of the parameters in y (the adjusted RL’s) as

 ˆ̂

T

yy ll
=Q CQ C (94)

where
yy

Q contains estimates of the variances ()2 2 2, ,
A B C

s s s and covariances (), ,AB AC BCs s s of the

adjusted RL’s.

2

2

2

A AB AC

yy BA B BC

CA CB C

s s s

s s s

s s s

 
 

=  
 
 

Q

with C given in (93) and ˆ̂ll
Q given in (90) the cofactor matrix of the adjusted RL’s

yy
Q in (94) is

1.313291e-05 1.186709e-05 1.250000e-05

1.186709e-05 1.313291e-05 1.250000e-05

1.250000e-05 1.250000e-05 1.450000e-05

yy

 
 =  
  

Q (95)

Using the relationship 2

0σ= QΣΣΣΣ and (95) the standard deviations of the adjusted RL’s are

() ()

() ()

()()

2 2

0

2 2

0

2 2

0

4.193038 1.313291e-05 0.007421 m

4.193038 1.313291e-05 0.007421 m

4.193038 1.450000e-05 0.007797 m

A A

B B

C C

s

s

s

σ σ

σ σ

σ σ

= = =

= = =

= = =

 20

Indirect Least Squares

The observation equation for a measured height difference
XY

l between two points X and Y can be

written as

X XY XY Y

RL l v RL+ + = (96)

Using (96) we may write an equation for each of the n = 5 observations (measured height

differences) in the form

1 1 729

2 2

3 3

4 4

731 5 5

RL RL

RL RL

RL RL

RL RL

RL RL

A

A C

C B

A B

B

l v

l v

l v

l v

l v

+ + =

+ + =

+ + =

+ + =

+ + =

These equations may be re-arranged so that the unknown quantities (the residuals and the u = 3

unknown RL’s of A,B,C) are on the left-hand side of the equals sign and the known quantities are

on the right-hand side

()

1 729 1

2 2

3 3

4 4

5 731 5

RL RL RL RL

RL RL

RL RL

RL RL

RL RL

A B C

A C

B C

A B

B

v l

v l

v l

v l

v l

+ + + = −

+ + = −

− + = −

+ − = −

− = − +

In the matrix form () () () (),1 , ,1 ,1n n u u n
+ =v B x f the equations are

1

2

3

4

5

1 0 0 22.210

RL1 0 1 0.405

RL0 1 1 0.655

RL1 1 0 1.070

0 1 0 23.275

A

B

C

v

v

v

v

v

     
     − −      

      + =− −      
 − −      

     − −    

 (97)

The estimates of the variances and covariances are contained in Q [see (87)] and the diagonal

weight matrix W is

 () ()
1

, ,

40000

250000

250000

250000

40000

n n n n

−

 
 
 
 = =
 
 
  

W Q (98)

The solution for the vector x (the three RL’s), the residuals v and cofactor matrices
xx

Q and
vv

Q

are given by equations (58) to (67) and these are embodied in the MATLAB function

least_squares.m given in the Appendix, and a suitable ASCII text file for this problem is

 21

% Data file for function "least_squares.m"

% Example 3: Level Network

% B(1) B(2) B(3) f w

 1 0 0 22.210 40000

 1 0 -1 -0.405 250000

 0 -1 1 -0.655 250000
 1 -1 0 -1.070 250000

 0 -1 0 -23.275 40000

The solutions are

() () () ()

() () () ()

() () ()

, , , ,

,1 , , ,1

1

,1 , ,1

540000 250000 250000

250000 540000 250000

250000 250000 500000

519650

1362250

62500

1.3133e-05 1.1867e-05 1.2500e-05

1.1867e-05 1.3133e

T

u u u n n n n u

T

u u n n n n

u u u u

−

− − 
 = = − − 
 − − 

 
 = =  
 − 

= =

N B W B

t B W f

x N t

() () () (),1 ,1 , ,1

519650 22.209209

-05 1.2500e-05 1362250 23.275791

1.2500e-05 1.2500e-05 1.4500e-05 62500 22.617500

0.000791

0.003291

0.003291

0.003418

0.000791

n n n u u

     
     =     
     −     

 
 
 
 = − =
 
− 
  

v f B x

The cofactor matrix

2

2 1

2

1.3133e-05 1.1867e-05 1.2500e-05

1.1867e-05 1.3133e-05 1.2500e-05

1.2500e-05 1.2500e-05 1.4500e-05

A AB AC

xx BA B BC

CA CB C

s s s

s s s

s s s

−

   
   = = =   
     

Q N

and the cofactor matrices ˆ̂ and
vvll

Q Q are given in (90) and (91).

The variance factor is 2 2

0 4.193038 m
T

n u
σ = =

−

v Wv

Using the relationship 2

0xx xx
σ= QΣΣΣΣ the standard deviations of the adjusted RL’s of A, B and C are

() ()

() ()

()()

2 2

0

2 2

0

2 2

0

4.193038 1.3133e-05 0.007421 m

4.193038 1.3133e-05 0.007421 m

4.193038 1.4500e-05 0.007797 m

A A

B B

C C

s

s

s

σ σ

σ σ

σ σ

= = =

= = =

= = =

 22

Example 4: Position Fix by measured distances

•
•

•

•

•

•
k

k-1

1
2

3

�

�

�

A

B

C

tru
e
pat
h

Figure 4. Path of a ship in a navigation channel

Figure 4 shows the path of a ship in a navigation channel as it moves down the shipping channel at

a constant heading and speed. Navigation equipment on board automatically measures distances to

transponders at three navigation beacons A, B and C at 60-second intervals. The measured

distances are known to have a standard deviation of 1 metre and the solid line in Figure 4 represents

solutions of the ship's position for each set of measurements at the 60-second time intervals. The

true path of the ship is shown as the dotted line.

The coordinates of the three navigation beacons are:

 A: 10000.000 E B: 13880.000 E C: 15550.000 E

 10000.000 N 11250.000 N 7160.000 N

When the ship was at position 1 the measurements to the beacons were:

 1 → A: 4249.7 m 1 → B: 7768.6 m 1 → C: 7721.1 m

And the approximate location of the ship at position 1 is: 7875.000 E, 6319.392 N.

Indirect Least Squares can be used to determine the best estimate of the ship at position 1 by an

iterative technique set out as follows.

Observation equation for a measured distance

The observation equation for a measured distance at position k to beacon j can be written as

 ˆ
kj kj kjl v l+ = (99)

where
kj

l are the measured distance,
kj

v is the residual (small unknown correction) and ˆ
kjl is the

least squares estimate. k = 1,2,3, … is the ship location and j = A,B,C are the beacons.

The estimates ˆ
kjl are non-linear functions of the beacon coordinates ,

j j
E N and the ship estimates

ˆ ˆ,
k k

E N

 23

 () () ()
2 2

ˆ ˆ ˆ ˆ ˆ ˆ, , ,kj k k j j k j k jl l E N E N E E N N= = − + − (100)

Expanding (100) into a series using Taylor’s theorem gives

 () ()
ˆ ˆ

ˆ ˆ ˆ higher-order terms
ˆ ˆk k k k

k k

l l
l l E E N N

E N

∂ ∂
′ ′ ′= + − + − +

∂ ∂
 (101)

where ,
k k

E N′ ′ are approximate coordinates of the ship at position k, l′ is an approximate distance

computed using ,
k k

E N′ ′ and the coordinates of the beacon, and the partial derivatives are

ˆ ˆ

 ; for , ,
ˆ ˆ

k j k j

kj kj

kj kjk k

E E N Nl l
d c j A B C

l lE N

′ ′− −∂ ∂
= = = = =

′ ′∂ ∂
 (102)

,
kj kj

d c are dimensionless quantities known as distance coefficients.

With Ê E Eδ′= + and N̂ N Nδ′= + where ,E Nδ δ are small corrections then Ê E Eδ′− = and

N̂ N Nδ′− = . These expressions can be substituted into (101) − ignoring higher-order terms −

giving a Taylor series approximation for l̂ for a single distance

 l̂ l d E c Nδ δ′= + + (103)

Re-arranging (99) for a single distance gives

 ˆv l l− = − (104)

and substituting (103) into (104) and re-arranging gives the linearized form of the observation

equation for a measured distance as

kj kj k kj k kj kj

v d E c N l lδ δ ′− − = − (105)

Matrix form of observation equations

Observation equations for each measured distance to beacons , ,j A B C= from location 1k = can

be written in matrix form as

1

1 1 1

A A A A A

B B B B B

k
C C C C Ck k k

v d c l l
E

v d c l l
N

v d c l l

δ

δ
=

= = =

′− − −     
      ′+ − − = −        ′     − − −     

 (106)

The n = 3 equations in u = 2 unknowns (),E Nδ δ can be written as

 () () () (),1 , ,1 ,1n n u u n
δ+ =v B x f (107)

The Indirect Least Squares solution for the vector of corrections δ x is given by equations (58) to

(67). The approximate coordinates are ‘updated’ by adding the corrections and a new iteration (new

equations (106) formed and solved) performed. The iterative process is terminated when the

corrections reach some pre-determined (small) value.

 24

Iterative solution

1. Coordinates, measured distances and standard deviations

Station East

(m)

North

(m)

Observed

distance l (m)

s.d.

(m)

1 E′ = 7875.000 N′ = 6319.392

A 10000.000 10000.000 4249.7 1.0

B 13880.000 11250.000 7768.6 1.0

C 15550.000 7160.000 7721.1 1.0

2. Computed bearings and distances, distance coefficients, numeric terms (comp − obs)

Station Bearing

(degrees)
Distance l′

(m)

E E
d

l

′ −
=

′

N N
c

l

′ −
=

′
 l′ − l

1

A 30.000000 4250.000029 -0.500000 -0.866025 0.300029

B 50.611138 7769.872602 -0.772857 -0.634580 1.272602

C 83.749566 7720.896762 -0.994056 -0.108874 -0.203238

3. Solution for small corrections ,E Nδ δ

The solution for the vector δ x (the corrections ,E Nδ δ), the residuals v and cofactor

matrices
xx

Q and
vv

Q are given by equations (58) to (67) and these are embodied in the

MATLAB function least_squares.m given in the Appendix, and a suitable ASCII text file for

this problem is

% Data file for function "least_squares.m"

% Example 4: Position Fix by distances

% B(1) B(2) f w

 0.500000 0.866025 0.300029 1

 0.772857 0.634580 1.272602 1
 0.994056 0.108874 -0.203238 1

With =W I the solutions are

() () () ()

() () () ()

() () ()

, , , ,

,1 , , ,1

1

,1 , ,1

1.835454 1.031680

1.031680 1.164546

0.931524

1.045274

1.085209 0.961395 0.931524 0.005978

0.961395 1.710410 1.045274 0.892285

T

u u u n n n n u

T

u u n n n n

u u u u
δ −

 
= =  

 

 
= =  

 

−     
= = =     −     

N B W B

t B W f

x N t

() () () () () () (),1 ,1 , ,1 ,1 ,1 ,1

0.475701 4249.224299

ˆ0.701756 7769.301756

0.306327 7720.793673

n n n u u n n n

E

N

δ

δ

−   
   = − = = + =   
   −   

v f B x l l v

 25

The cofactor matrix 1

xx

−=Q N (see above) and the cofactor matrices ˆ̂ and
vvll

Q Q are

ˆ̂

2.7848e-01 4.1082e-01 1.7933e-01

6.0604e-01 2.6455e-01

1.1548e-01

7.2152e-01 4.1082e-01 1.7933e-01

3.9396e-01 2.6455e-01

8.8452e-01

vv

ll

− 
 = − 
  

− 
 =  
  

Q

Q

 The variance factor 0 2

2 0.812589 m
T

n u
σ = =

−

v Wv

4. Update coordinates

7875.000 0.006 7875.006 m

6319.392 0.892 6320.284 m

E E E

N N N

δ

δ

′= + = + =

′= + = + =

5. Perform next iteration

It can be shown that using the updated coordinates in a new iteration yields corrections having

magnitudes less than 0.0005 m. So the values E = 7875.006 m, N = 6320.284 m can be

regarded as correct to the nearest mm.

Precision of Position Fix

The variance-covariance matrix

2

2 2 1

0 02

0.881829 0.781219

0.781219 1.389860

E EN

xx xx

EN N

σ σ
σ σ

σ σ
−

  − 
= = = =   −  

Q NΣΣΣΣ (108)

contains the variances and covariances of the adjusted coordinates of point 1.

The standard deviations of the east and north coordinates are

0.881829 0.939 m

1.389860 1.179 m

E

N

σ

σ

= =

= =

 26

Standard Error Ellipse

Consider a point whose variances 2 2,
E N

σ σ and covariance
EN

σ are known. The variance in any

other direction u may be calculated by considering the projection of E and N onto the u-axis which

is rotated anti-clockwise from the E-axis by an angle φ .

cos sin

cos 0

0 sin

u E N

E

N

φ φ

φ

φ

= +

   
=    
   

 (109)

or =y Ax (110)

 Figure 5.

Applying Propagation of Variances to (110) gives T

yy xx= A AΣ ΣΣ ΣΣ ΣΣ Σ or

2

2 2 2 2 2

2

cos 0 cos 0
cos sin 2 cos sin

0 sin 0 sin

E EN

u E N EN

EN N

φ φσ σ
σ σ φ σ φ σ φ φ

φ φσ σ

    
  = = + +     

    
 (111)

Equation (111) gives the variance 2

u
σ in a direction φ (positive anti-clockwise) from the E-axis and

defines the pedal curve of the Standard Error Ellipse.

•

•

tangent

n
o
rm

al

A

P

N

Pedal curve

major

axis

m
in

o
r

a
xis

a

b

θ

Ellipse

O
φ

Scale of units

0 1 2

E

Figure 6. The pedal curve of the Standard Error Ellipse

In Figure 6, A is a point on an ellipse. The tangent to the ellipse at A intersects a normal to the

tangent passing through O at P. As A moves around the ellipse, the locus of all points P is the pedal

curve of the ellipse. The distance 2

uOP σ= for the angle φ . The maximum and minimum values

of 2

u
σ define the direction and lengths of the axes of the ellipse.

N

E

u

φ

N sin φ

E cos φ

 27

The semi-axes a and b of the Standard Error Ellipse are the maximum and minimum values of
u

σ

and the angle (positive anti-clockwise) from the E-axis to the major axis of the Standard Error

Ellipse is θ and

() ()

()

()

2 22 2

2 21
2

2 21
2

2 2

2

2
tan 2

E N EN

E N

E N

EN

E N

W

a W

b W

σ σ σ

σ σ

σ σ

σ
θ

σ σ

= − +

= + +

= + −

=
−

 (112)

Using the values in (108) 2 20.881829, 1.389860, 0.781219
E N EN

σ σ σ= = = − and using (112) gives

the parameters of the Standard Error Ellipse for the position fix at point 1 as

1.642957

1.399044 m

0.560683 m

1.562438
tan 2

0.508031

2 251.987923 degree

125.993962 degree

W

a

b

θ

θ

θ

=

=

=

−
=

−

=

=

•
•

•

•

•

•
k

k-1

1

2

3

�

�

�

A

B

C

Figure 7. Standard Error Ellipse of position fix 1

 28

Exercise 1: Line of Best Fit

Figure 8 shows part of an Abstract of Fieldnotes with offsets from occupation to a traverse line in

Whitten Street. The bearing of the traverse line is 90° 00′.

⊗⊗⊗⊗

⊗

∧ ∧

N

0
0

0000000000

ABSTRACT OF FIELDNOTES

Distances in metres

1.051.111.181.251.32

90 00° ′

5
0
.4

4

1
0
0

.0
8

1
5
0

.3
4

2
0
0

.1
4

AB

89 88 87 86

p
o
st

 &
 w

ir
e

p
o
st

 &
 w

ir
e

p
o
st

 &
 w

ir
e

p
o
st

 &
 w

ir
e

p
o
st

 &
 w

ir
e

post and wire

WHITTEN ROAD

Figure 8. Traverse and offsets in Whitten Road

Use Indirect least squares (and least_squares.m) to determine the bearing of the line of best fit

through the occupation in Whitten Street. You may consider the chainages (linear distances along

Whitten Street) to be free of error.

(The answer is: 90° 04′ 40″)

Exercise 2: Index Error of Total Station EDM

Six horizontal distances between four points in a straight line are measured with a Total Station that

is known to have an index correction c.

Figure 9. Total Station baseline

The Total Station measurements are: AB 51.198 m BC 111.745 m CD 103.605 m

 AC 162.910 m BD 215.301 m

 AD 266.460 m

The measurements are assumed to be of equal precision (i.e., =W I).

The measurement model is assumed to be: observation + residual + c = true value

Use Indirect least squares (and least_squares.m) to determine the index correction c and the

distances x, y and z.

(The answers are: c = -0.0440, x = 51.1580 m, y = 111.70215 m, z = 103.5570 m)

A B C D

zyx

 29

Exercise 3: Parabolic Vertical Curve

A surveyor working on the re-alignment of a rural road is required to fit a parabolic vertical curve

such that it is the best fit to the series of natural surface Reduced Levels (RLs) on the proposed new

alignment. Figure 10 shows a vertical section of the proposed alignment with Chainages (x-values)

and RLs (y-values).

Chainage

Red. Level

1
00

1
5

0

2
00 2
50

30
0

3
5

0

Natural
S cu arf e

6
3

.4
8

4
6.

2
0

3
8

.9
6

5
7.

7
2

Datum RL 50.00

36
.6

2

4
7

.4
2

Figure 10. Natural surface vertical section

The general equation of a parabolic curve is 2y ax bx c= + +

The chainages are assumed to be error free and the RL’s are of equal precision.

Use Indirect least squares (and least_squares.m) to determine the values of the coefficients a and b

and the constant term c.

(The answers are: a = 0.0015, b = -0.6882, c = 116.3500)

Exercise 4: Position Fix

In Example 4 (see Figure 4) the position of the ship in the navigation channel is obtained using

Indirect least squares to solve for corrections to approximate coordinates of the ship when the

measurements to shore-based beacons are made. In Example 4 the ship is at position 1.

For this Exercise, solve for the ship’s position at point 3 when the measured distances are

 3 → A: 3518.4 m 3 → B: 6872.2 m 3 → C: 6857.6 m

And the approximate location of the ship at position 3 is: 8705.5 E, 6727.9 N.

Only a single iteration is required.

(Answer: E = 8705.803 m, N = 6727.959 m)

 30

THE KALMAN FILTER

A Kalman filter is a set of equations that are applied recursively to estimate the state of a system

from a sequence of noisy measurements at times 1 2 3, , ,t t t …etc. The state of the system is its value

or values at times 1 2 3, , ,t t t …etc. and a system may have a single value or multiple values. Say, for

instance, the system is a ship steaming on a particular heading in a shipping channel and the state of

the system (the ship) is its east and north coordinates (),k kE N and its velocity (),
k k

E N� � We say that

this system (the ship) has a state vector , , ,
T

k k k k k
E N E N =  x � � containing four elements and the

subscript k indicates a value at time
k

t .

On the other hand, a system may be a process such as electronic distance measurement (EDM) by

phase comparison of emitted and reflected light beams. The state of this system is a single value,

the distance ()kD , determined at times 1 2 3, , ,t t t …etc., and this system (the EDM) has a state vector

[]k kD=x containing a single element and the subscript k indicates a value at time
k

t .

Noisy measurements are measurements that contain small random errors assumed to be normally

distributed, i.e., the aggregation of errors in size groupings would form the familiar symmetric bell-

shaped histogram with positive and negative errors equally likely and small errors more frequent

than large errors. Surveyors usually talk of residuals (or corrections) rather than errors, where a

residual is the same magnitude as an error but of opposite sign.

A Kalman filter gives the best estimates of the state of a dynamic system at a particular instant of

time. And a dynamic system can be one whose values are changing with time, due to the motion of

the system and measurement errors, or one whose values are measured at various instants of time

and appear to change due to measurement errors. Dynamic systems do not have a single state

(consisting of one or many values) that can be determined from a finite set of measurements but

instead have a continuously changing state that has values sampled at different instants of time.

The Kalman filter equations were published in 1960 by Dr. R.E. Kalman in his famous paper

describing a new approach to the solution of linear filtering and prediction (Kalman 1960). Since

that time, papers on the application of the technique have been filling numerous scientific journals

and it is regarded as one of the most important algorithmic techniques ever devised. It has been

used in applications ranging from navigating the Ranger and Apollo spacecraft in their lunar

missions to predicting short-term fluctuations in the stock market. Sorenson (1985) shows

Kalman's technique to be an extension of C.F. Gauss' original method of least squares developed in

1795 and provides an historical commentary on its practical solution of linear filtering problems

studied by 20th century mathematicians.

The derivation of the Kalman filter equations can be found in many texts related to signal

processing that is the usual domain of Electrical Engineers, e.g., Brown and Hwang (1992). These

derivations often use terminology that is unfamiliar to surveyors, but two authors, Krakiwsky

(1975) and Cross (1992) both with geodesy/surveying backgrounds, have derivations, explanations,

terminology and examples that would be familiar to any surveyor. This paper uses terminology

similar to Cross and Krakiwsky. The Kalman filter equations and the associated measurement and

dynamic models are given below with a brief explanation of the terms. It is hoped that the study of

the two examples will make help to make the Kalman filter a relatively easily understood process.

 31

In the derivation and explanation that follows the ‘hat’ symbol (^) above a vector x indicates that it

is an estimate of the true (but unknown) state of the system derived from the Kalman Filter (a least

squares process). This is also known as the filtered state. The ‘prime’ symbol (′) indicates a

predicted quantity.

Equations marked ∗∗∗ on the left-hand side are ‘components’ of the Kalman Filter and are listed in

the summary of the filter at the end of the derivations.

Primary and Secondary (or Dynamic) Measurement Models

Suppose that 1 2 3 1, , , , ,
k k−x x x x x… are vectors of parameters or state vectors of a system at times

1 2 3 1, , , , ,
k k

t t t t t−… and that 1 2 3 1, , , , ,
k k−l l l l l… are the corresponding vectors of measurements

associated with the parameters. We may write three equations as follows:

1 1 1 1 1

1

primary

primary

secondary or dynamic

k k k k k

k k k k k

k k m

t

t

− − − − −

−

+ =

+ =

= +

v B x f

v B x f

x Tx v

 (113)

where

 x is the state vector containing the parameters of the system

 v is the vector of residuals associated with the measurements l where ˆ = +l l v

 B is a coefficient matrix

 f is a vector of numeric terms derived from the measurements l

 T is the transition matrix

 vm is a vector of residuals associated with the dynamic model

The primary measurement models in (113) link measurements l (contained in the vector of numeric

terms f) with parameters in the state vector x at times 1k
t − and

k
t . The primary measurement

model is the same as the Parametric case in the earlier Combined Least Squares derivations and

examples [see Example 1: Line of Best Fit and Example 3: Level Network Adjustment (Indirect

Least Squares)]

The secondary or dynamic model in (113) links the state vectors x at times 1k
t − and

k
t . The

transition matrix T is an attempt to model temporal changes between the state vectors (the dynamics

of the system) and vm is a vector of corrections reflecting the fact that the transition matrix T is an

approximation of the true dynamics. The elements of vm are assumed to be small, random and

normally distributed with a mean of zero.

The measurements 1 and
k k−l l and the model corrections vm have associated weight matrices

1,k k−W W and
m

W and cofactor matrices 1,k k−Q Q and
m

Q where in general 1−=Q W .

 32

System Driving Noise of the Secondary Model

For the solution of many practical problems, it is useful to assume the vector
m

v as being the

product of two matrices

m

=v Hw (114)

where w is a vector of quantities known as the system driving noise which cause the secondary

model to be incorrect and H is a coefficient matrix chosen so that the product Hw represents the

effect of these quantities on the parameters. Note that in general H will not be a square matrix as

the number of error sources causing the system noise in the secondary model is not necessarily

equal to the number of parameters in x.

The Cofactor Matrix of the Secondary Model Qm

The system driving noise w in (114) is assumed to be a vector of random quantities with zero mean

and variance matrix estimated by the cofactor matrix
w

Q . The cofactor matrix Qm can be obtained

using Propagation of Variances (or propagation of cofactors) that can be summarized as follows:

If linear (or linearized) equations can be expressed in a matrix form

 = +y Ax b

where y is a vector of variables, A is a coefficient matrix, x is a vector of variables having an

associated cofactor matrix
x

Q and b is a vector of constants then the cofactor matrix of the

variables y is given by

 T

y x=Q AQ A

Cofactor propagation using (114) gives

 T

m w
=Q HQ H (115)

and the weight matrix of the secondary model is given by

 () ()
11 T

m m w

−−
= =W Q HQ H (116)

Derivation of the Kalman Filter Equations

The system of equations for the Kalman Filter are the primary models at 1k
t − and

k
t , and the

secondary model are

1 1 1 1

1

k k k k

k k k k

k k m

− − − −

−

+ =

+ =

− + − =

v B x f

v B x f

Tx x v 0

 (117)

Enforcing the least squares principle − the sum of the squares of the residuals, multiplied by

coefficients reflecting their precision ()Tv Wv − leads to minimizing the function ϕ where

 33

()

()

()

1 1 1

1 1 1 1 1

2

3 1

2

2

2

T T T

k k k k k k m m m

T

k k k k

T

k k k k

T

k k m

ϕ − − −

− − − −

−

= + +

− + −

− + −

− − −

v W v v W v v W v

k v B x f

k v B x f

k x Tx v

 (118)

Note that there are three quadratic forms ()Tv Wv to be minimized subject to three constraint

equations. ϕ can be minimized by using Lagrange’s method of undetermined multipliers 1 2 3, ,k k k

and setting the partial derivatives of (118) to zero.

1 1 1 2

1

3 1 1 3

1

2 3

2 2 2 2

2 2 2 2

2 2

T T T T

k k k k

k k

T T T T

m m k

m k

T T

k

k

ϕ ϕ

ϕ ϕ

ϕ

− −

−

−

−

∂ ∂
= − = = − =

∂ ∂

∂ ∂
= + = = − + =

∂ ∂

∂
= − − =

∂

v W k 0 v W k 0
v v

v W k 0 k B k T 0
v x

k B k 0
x

Transposing, re-arranging and dividing each equation by 2 gives

1 1 1

2

3

1 1 3

1 2 3

k k

k k

m m

T T

k

T

k

− −

−

−

− =

− =

+ =

− + =

− − =

W v k 0

W v k 0

W v k 0

B k T k 0

B k k 0

These five equations together with the primary and secondary models form a system of normal

equations that can be written in the form of a hyper-matrix

11

11

2

31 1

1

kk

kk

mm

T T

k

T

k

k k

kk k

k

−−

−

− −

−

−     
    −     
    
    

−     =
    − −
    
    
    
    

− −        

vW 0 0 I 0 0 0 0 0

v0 W 0 0 I 0 0 0 0

v0 0 W 0 0 I 0 0 0

k0 0 0 B 0 T 0 0 0

k0 0 0 0 B I 0 0 0

kI 0 0 0 0 0 B 0 f

x0 I 0 0 0 0 0 B f

x0 0 I 0 0 0 T I 0

 (119)

Partial Solution 1k −
′x

Using only the observations 1k −l at time 1k
t − a partial solution for 1k −x designated 1k −

′x can be

obtained from (119) by deleting all matrices associated with the primary model at
k

t and the

secondary model. This gives

 34

1 1

1 1

1 1 1

k k

T

k

k k k

− −

−

− − −

′−     
     ′− =     

′          

W I 0 v 0

0 B 0 k 0

I 0 B x f

Changing sign where appropriate and re-arranging gives

1 1

1 1 1

1 1

k k

k k

T

k k

− −

− −

− −

′−     
     ′ =     

′          

W I 0 v 0

I 0 B k f

0 B 0 x 0

 (120)

Equation (120) is identical in form to (13) and the partial solution is given by (36) to (38)

 1

1 1 1k k k

−

− − −
′ =x N t (121)

where

 1 1 1 1 1 1 1 1 T T

k k k k k k k k− − − − − − − −= =N B W B t B W f (122)

Cofactor Matrix of Partial Solution
1kx −′Q

The cofactor matrix of the partial solution is given by (42) as

1

1

1kx k−

−
′ −=Q N (123)

Solution for ˆ
k

x

Considering the partitioned form of the normal equations (119) we can obtain a solution for ˆ
k

x

using all the information in the primary models at 1k
t − and

k
t and the secondary model. This is

achieved by using the reduction process set out previously [see equations (13) to (19)]. First

eliminate 1,k k−v v and
m

v by applying (16) to (119). After some simplification we arrive at

11

2

3 11 1

1

T T

k

T

k

kk k

k kk k

km

−

−− −

−

 −    
     

− −     
     =
     
     
     −    

k 0B 0 T 0 0

k 00 B I 0 0

k fQ 0 0 B 0

x f0 Q 0 0 B

x 00 0 Q T I

 (124)

and performing elementary row and column transformations on (124) gives a set of reduced normal

equations where 1,k k−v v and
m

v have been eliminated.

1 1 11

1 1

3

2

k k k

T

k k

m

T

k k

k k k

δ

− − −

− −

    
    −    
    − =
    

− −    
        

Q B 0 0 0 fk

B 0 T 0 0 0x

0 T Q I 0 0k

0 0 I 0 B 0x

0 0 0 B Q fk

 (125)

 35

Now, 1k is eliminated from (125) by applying (16) and simplified using the auxiliaries 1k −N and

1k −t in (122) to give

111

3

2

T
kkk

m

T

kk

kk k

−−−
    
    

−     =
    − −
    
      

txN T 0 0

0kT Q I 0

0x0 I 0 B

fk0 0 B Q

 (126)

Now 1k −x is eliminated from (126) by applying (16) and simplified to give a reduced set of normal

equations containing only variates ()2 3, ,kx k k related to the primary model at
k

t and the secondary

model.

1 1

1 3 1 1

2

T

m k k k

T

k k

k k k

− −
− − −

   +  
    − − =    
        

Q TN T I 0 k TN t

I 0 B x 0

0 B Q k f

 (127)

Predicted Value of Parameters
k
′x (Predicted State Vector)

The normal equations (127) can be simplified by introducing the predicted value of the parameters

at
k

t , designated
k
′x and its cofactor matrix

kx′Q . In Kalman Filtering these are known as the

predicted state vector and the predicted state cofactor matrix respectively.

Following equations (113) we write the predicted state vector 1k k −
′ ′=x Tx and substituting (121)

gives

 1

1 1k k k

−

− −
′ =x TN t (128)

Cofactor Matrix of Predicted Parameters
kx′Q (Predicted State Cofactor Matrix)

Applying cofactor propagation to (128) gives

 () ()
1 1

1 1 1 1

1 t 1 1 t 1k k k

T
T

x k k k k− −

− − − −
′ − − − −= =Q TN Q TN TN Q N T (129)

The cofactor matrix
1tk−

Q can be obtained by applying cofactor propagation to (122) as

() ()
1 1t 1 1 f 1 1

1 1 1 1 1

1 1 1

1

k k

T
T T

k k k k

T

k k k k k

T

k k k

k

− −− − − −

− − − − −

− − −

−

=

=

=

=

Q B W Q B W

B W Q W B

B W B

N (130)

Substituting (130) into the right-hand side of (129) gives

 1 1 1

1 1 1 1k

T

x k k k k

− − −
′ − − − −= =Q TN N N T TN T

 36

By inspection of (113) we see that any cofactor propagation involving the secondary model must

include the contribution of the model errors, thus the cofactor matrix for the predicted parameters is

∗∗∗
1

1

1k k

T

x k m x m−

−
′ ′−= + = +Q TN T Q TQ T Q (131)

[Note that applying cofactor propagation to the dynamic model in equations (113)

gives
1k kx x m−

= +Q TQ T Q]

The quantities in (128) and (131) appear in (127) which allows (127) to be written as

3

2

kx k

T

k k

k k k

′  ′   
     − − =     
         

Q I 0 k x

I 0 B x 0

0 B Q k f

 (132)

Solution for Parameters ˆ
k

x (Filtered State Vector)

In Kalman Filtering ˆ
k

x is known as the filtered state vector. To solve for
k

x and thus ˆ
k

x , we may

eliminate 3k from (132) by applying (16) giving

2

kk

T
x kx k k

kk k

′′
′ −   

=    
      

W xW B x

k fB Q
 (133)

The first equation in (133) is 2k k

T

x k k x k′ ′ ′− =W x B k W x and pre-multiplying both sides by
kx′Q gives

 2k

T

k k x k′′= +x x Q B k (134)

2k is now obtained by applying (16) to (133) giving

 () ()
1

2 k

T

k k x k k k k

−

′ ′= + −k Q B Q B f B x (135)

and substituting (135) into (134) gives

 () ()
1

k k

T T

k k x k k k x k k k k

−

′ ′′ ′= + + −x x Q B Q B Q B f B x (136)

In Kalman Filtering, the expression

∗∗∗ ()
1

k k

T T

x k k k x k

−

′ ′= +K Q B Q B Q B (137)

is called the gain matrix and substituting (137) into (136) gives

∗∗∗ ()k k k k k
′ ′= + −x x K f B x (138)

 37

The term in parentheses on the right-hand side of (138) is known as the vector of predicted residuals

k
′v and

k k k k
′ ′= −v f B x (139)

We now have a solution for ˆ
k

x

 ˆ
k k k

′ ′= +x x Kv (140)

In Kalman Filtering ˆ
k

x is known as the filtered state vector.

The Cofactor Matrix ˆkx
Q (Filtered State Cofactor Matrix)

In Kalman Filtering, the cofactor matrix of the parameters ˆ
k

x (the filtered state vector) is known as

the filtered state cofactor matrix. It can be determined by using cofactor propagation as follows.

Re-arrange (138) as

()

()

k k k k k

k k k k

k k k

′ ′= + −

′ ′= + −

′= − +

x x K f B x

Ix Kf KB x

I KB x Kf

and apply cofactor propagation to give

 () ()ˆ fk k k

T T

x k x k′= − − +Q I KB Q I KB KQ K (141)

Now, since the numeric terms in
k

f will be functions of the observations
k

l (and some constants)

we may write fk k
=Q Q and substituting this result into (141) gives

 () ()ˆk k

T T

x k x k k′= − − +Q I KB Q I KB KQ K (142)

In Kalman Filtering, the term ()k−I KB is known as the cofactor update matrix.

Expanding and gathering terms in (142) gives

 ()ˆk k k k k

T T T

x x k x k k x k x k′ ′ ′ ′= − + + −Q Q KB Q KQ KB Q B Q B K (143)

The term in parenthesis on the right-hand side of (143) is equal to 0, which can be proved by re-

arranging (137). Hence, we may express the cofactor matrix of the parameters at time
k

t as

∗∗∗ ()ˆk kx k x′= −Q I KB Q (144)

In practical applications of Kalman Filtering, the cofactor update matrix ()k−I KB can sometimes

become ‘unstable’ due to small rounding errors in the computation. To contain the instability, (142)

is preferred over (144) when computing the filtered state cofactor matrix.

 38

Summary of Kalman Filter Equations

With initial estimates of the state vector 1
ˆ

k −x and the state cofactor matrix
1ˆkx −

Q ; and with the

cofactor matrix of the dynamic model
m

Q a Kalman Filter has the following five general steps

(1) Compute the predicted state vector at
k

t

 1
ˆ

k k −
′ =x Tx

(2) Compute the predicted state cofactor matrix at
k

t

1ˆk kx x m−′ = +Q TQ T Q

(3) Compute the Kalman Gain matrix

 ()
1

k k

T T

x k k k x k

−

′ ′= +K Q B Q B Q B

(4) Compute the filtered state vector by updating the predicted state with the

measurements at
k

t

 ()k k k k k
′ ′= + −x x K f B x

(5) Compute the filtered state cofactor matrix

 ()ˆk kx k x′= −Q I KB Q

Go to step (1) and repeat the process for the next measurement epoch 1k
t +

The Kalman filter equations are relatively easy to implement on modern computers (a reason for its

popularity) and the examples studied below will be supplemented by MATLAB4 computer code in

the appendix.

4 MATLAB, a registered trademark of The MathWorks, Inc., is a high-performance language for technical computing.

It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions

are expressed in familiar mathematical notation.

 39

Example 5: Determination of a Theoretical Distance by an EDM using a Kalman Filter

The EDM component of a Total Station measures distances by phase comparison of an emitted and

reflected modulated light beam. The measurement is an electro/optical process and the distance we

see displayed after pressing the measure button on the Total Station is the "filtered" value of many

hundreds of individual measurements, since a measurement takes only a number of milliseconds.

This value is the result of a Kalman filter process.

Consider the following sequence of measurements at times 1 2 3, , etct t t … ,

 355.425, 355.438, 355.397, 355.429, 355.423, …

The variation in the measurements is assumed to be due to normally distributed random errors

arising from the internal measurement process; often called the process noise. [The measurement

sequence above, was generated by adding normally distributed random errors with mean zero and

standard deviation 0.010 m to a constant value of 355.420 m.]

How will a Kalman filter produce the "filtered" value from this sequence?

First, let us assume that the measurement model is

 ˆ
k k k

+ =l v l (145)

where
k

l is the n,1 vector of measurements,
k

v is the n,1 vector of residuals (small unknown

corrections to the measurements) and ˆ
k

l are estimates of the true (but unknown) value of the

measurements. n is the number of measurements, that in this case is one. The primary

measurement model can be expressed in terms of the filtered state vector ˆ
k

x at time
k

t as

 ˆ
k k k k

+ =v B x f (146)

In this case ˆ
k

x contains the elements of ˆ
k

l , both vectors containing single quantities and
k k

= −f l

also both containing single quantities (the measured distance at
k

t). The matrix B will contain a

single quantity, []1= −B .

Secondly, the dynamic model linking the elements of the state vector at times 1k
t − and

k
t is

 1k k m−= +x Tx v (147)

The state vector contains a single element that should remain unchanged between 1k
t − and

k
t (any

change is simply due to measurement errors) then the transition matrix T will contain a single

element []1=T and there are no assumed corrections to this model; hence
m

=v 0 , ,= =H 0 w 0

and from equation (115)
m

=Q 0 .

Lastly, an estimate of the cofactor matrix of the measurements Q and the filtered state cofactor

matrix
1x

Q must be made. Let us assume (guess) that the measurements have a standard deviation

of 10 mm (0.010 m) and hence their estimated variance is ()
2

0.010 and ()
2

0.010 =
 

Q .

 40

Since our primary measurement model has a state vector containing a single value (the

measurement), then
x

Q will only contain a single value, and we have as a starting estimate

()
1

2
0.010x

 =
 

Q , the same as Q.

Now we can now start the Kalman filter at epoch 2t using the values at 1t as filtered estimates.

(1) Compute the predicted state vector at

epoch 2t using the measurement

355.425 at 1t as the filtered state 1x̂

 [][]
2 1

ˆ

1 355.425

355.425

′ =

=

=

x Tx

(2) Compute the predicted state cofactor

matrix at 2t using ()
1

2
0.010x

 =
 

Q

as the filtered estimate

 [] () []

()

2 1

2

2

1 0.010 1 0

0.010

T

x x m′ = +

 = +
 

=

Q TQ T Q

(3) Compute the Kalman Gain matrix

noting that ()
2

0.010 =
 

Q

()
() []

() [] () []()

() ()

2

1
2 2

2 2

1

2 2 2

1
2 2

0.010 1

0.010 1 0.010 1

0.010 2 0.010

0.500

T T

x x

−

−

′ ′

−

−

× + − −

= +

 =  

      

   = −
   

= −

K Q B Q B Q B

(4) Compute the filtered state vector 2x̂

by updating the predicted state with

the measurements at 2t

()

[] []{

[] [][]()}

2 2 2 2 2

355.425 0.500

355.438 1 355.425

ˆ

355.4315

+ −

− − −

′ ′= + −

=

×

=

x x K f B x

(5) Compute the filtered state cofactor

matrix at 2t

()

[] [][]() ()

2 22 2

2
1 0.500 1 0.010

0.000050

x x′= −

 = − − −
 

=

Q I K B Q

Go to step (1) and repeat the process

for the next measurement epoch 3t .

 41

The values from the Kalman filter for epochs 3 4 5, and t t t are

epoch 3t epoch 4t epoch 5t

3

3

3

3

3

ˆ

355.4315

0.000050

0.333333

ˆ 355.4200

0.000033

x

x

′

′ =

=

= −

=

=

x

Q

K

x

Q

4

4

4

4

4

ˆ

355.4200

0.000033

0.250000

ˆ 355.4223

0.000025

x

x

′

′ =

=

= −

=

=

x

Q

K

x

Q

5

5

5

5

5

ˆ

355.4223

0.000025

0.200000

ˆ 355.4224

0.000020

x

x

′

′ =

=

= −

=

=

x

Q

K

x

Q

So, the sequence of measurements is

 355.425, 355.438, 355.397, 355.429, 355.423, …

and the Kalman filter estimates x̂ (the filtered values) are

 355.425, 355.4315, 355.4200, 355.4223, 355.4224, …

Something that should be noted is that the filtered state cofactor matrix
x

Q contains the

estimate of the variance of the filtered value (variance is standard deviation squared). We

started with an estimated value ()
1

2
0.010 0.000100

x
= = =Q Q and after five epochs the

estimated value had reduced to
5

0.000020
x

=Q equivalent to an estimated standard deviation

of 0.0045 m. So the Kalman filter gives estimates with a better precision than the assumed

precision of the measurement sequence; as we should expect from a least squares process.

The Kalman filter for this simple case is very easily programmed and Appendix 1 contains a

Kalman filter program (edm.m) written in the MATLAB language that processes 250 EDM

measurements. These measurements are obtained by adding normally distributed random

errors, with mean zero and standard deviation 0.010 m, to a constant value 355.420 m. Figure

1 below shows two plots (i) the filtered estimate of the distance (the filtered state) as a black

solid line and the 250 measurements as black dots and (ii) a plot of the standard deviation of

the filtered distance. After processing the 250 measurements the filtered distance was

355.4199 m with a standard deviation of 0.000632 m.

It is interesting to note that if all 250 measurements 1 2 3 250, , , ,x x x x… (each with standard

deviation 0.010 m
x

s =) had been recorded and the mean 1 2 250

250

x x x
x

+ + +
=

�
 computed,

then propagation of variances gives the standard deviation of the mean as

0.000632 m
250

x
x

s
s = = which is the same as the Kalman filter result.

 42

Figure 11. MATLAB plots of filtered state standard deviation of edm distance.

 43

Example 6: Determination of Position and Velocity of a Ship in a Navigation Channel.

Figure 12 shows the path of a ship in a navigation channel as it moves down the shipping

channel at a constant heading and speed. Navigation equipment on board automatically

measures distances to transponders at three navigation beacons A, B and C at 60-second

intervals. The measured distances are known to have a standard deviation of 1 metre and the

solid line in Figure 2 represents solutions of the ship's position for each set of measurements

at the 60-second time intervals. The true path of the ship is shown as the dotted line.

•
•

•

•

•

•
k

k-1

1
2

3

�

�

�

A

B

C

tru
e
pat
h

The coordinates of the

three navigation beacons

are:

: 10000.000 E

10000.000 N

A

: 13880.000 E

11250.000 N

B

: 15550.000 E

7160.000 N

C

Figure 12. Path of a ship in a navigation channel.

The transponder measurements, from the ship to the navigation beacons A, B and C at 60-

second time intervals are shown in Table 1 below. The data were generated by assuming the

starting coordinates of the ship were 7875.000 m East and 6319.392 m North and the ship was

travelling at 15 knots on a heading of 064º (1 knot = 1 nautical mile per hour and 1 nautical

mile = 1852 metres). At 60-second intervals, the true ship position and distances to the

beacons were computed. These distances were then "disturbed" by the addition of normally

distributed random errors (with zero mean and standard deviation 1 metre) and then rounded

to the nearest 0.1 m.

 44

Measurement

Epoch

Transponder measurements to

navigation beacons

A B C

1 4249.7 7768.6 7721.1

2 3876.1 7321.4 7288.5

3 3518.4 6872.2 6857.6

4 3193.3 6426.0 6429.1

5 2903.6 5982.6 6009.7

6 2664.0 5543.2 5596.6

7 2490.9 5107.7 5191.5

8 2392.9 4678.9 4797.1

9 2383.2 4253.4 4417.8

10 2463.0 3841.7 4050.9

11 2623.2 3435.6 3709.9

12 2849.0 3054.2 3395.8

13 3126.7 2692.9 3119.4

14 3446.9 2366.6 2891.1

15 3793.4 2096.4 2724.4

16 4166.0 1900.6 2630.9

17 4552.2 1804.7 2610.2

18 4956.2 1824.8 2677.4

19 5366.4 1959.6 2819.7

20 5785.0 2182.8 3023.5

Table 1. Transponder measurements at 60-second time intervals

How will a Kalman filter produce an estimated position, speed and heading of the ship from

the transponder measurements?

Note that in our Kalman filter, the state vector will be , , ,
T

k k k k k
E N E N =  x � � containing

4n = elements (or parameters) where (),k kE N are the ship's position and (),
k k

E N� � the ship's

velocity components. The speed and the heading of the ship (bearing from North) at time
k

t

is

 () () ()
2 2

tan k
k k

k

E
speed E N heading

N
= + =

�
� �

�
 (148)

The measurement model (primary model)

Let us assume that the primary or measurement model is

 ˆ
k k k

+ =l v l (149)

where
k

l is the m,1 vector of measurements (the transponder distances),
k

v is the m,1 vector

of residuals (small unknown corrections to the measurements) and ˆ
k

l are estimates of the true

(but unknown) value of the measurements. m is the number of measurements, that in this case

is three at each measurement epoch. The estimates ˆ
k

l are non-linear functions of the

 45

coordinates E,N of the beacons A, B and C and the filtered state coordinates ˆ ˆ,
k k

E N of the ship

at time
k

t

 () () ()
2 2

ˆ ˆ ˆ ˆ ˆ ˆ, , , for , ,j k k j j k j k jl l E N E N E E N N j A B C= = − + − = (150)

Expanding equation (150) into a series using Taylor's theorem gives

 () ()
ˆ ˆ

ˆ ˆ ˆ higher order terms
ˆ ˆk k k k

k k

l l
l l E E N N

E N

∂ ∂
′ ′ ′= + − + − +

∂ ∂

where ,
k k

E N′ ′ are approximate coordinates of the ship at
k

t , l′ is an approximate distance

computed using ,
k k

E N′ ′ and the coordinates of the beacon, and the partial derivatives are

ˆ

ˆ

ˆ
 for , ,

ˆ

k j

j

jk

k j

j

jk

E El
d

lE

N Nl
c j A B C

lN

′ −∂
= =

′∂

′ −∂
= = =

′∂
 (151)

Re-arranging equation (149) for a single distance gives

 ˆv l l− = −

and substituting the Taylor series approximation for l̂ (ignoring higher-order terms) and re-

arranging gives the linearized form of the primary measurement model as

 ()ˆ ˆ for , ,
j j k j k j j j k j k

v d E c N l l d E c N j A B C′ ′ ′− − = − + − − = (152)

This primary measurement model can be expressed in terms of the filtered state vector ˆ
k

x at

time
k

t in the matrix form as

ˆ
0 0 0 0

ˆ
0 0 0 0

0 0 0 0

A A A A A A A

B B B B B B B

C C C C C C Ck k k k

kk

E E
v d c l l d c

NN
v d c l l d c

EE
v d c l l d c

NN

  ′ 
′− − − − −          ′          ′+ − − = − + − −         ′ 
′        − − − − −          ′    

��

��

or ˆ
k k k k k k k k

′ ′+ = − + =v B x l l B x f (153)

Now in step (4) of the Kalman filter algorithm the filtered state vector ˆ
k

x is obtained from

 ()ˆ
k k k k k

′ ′= + −x x K f B x (154)

and substituting for
k

f from equation (153) gives

 46

()

()

ˆ
k k k k k kk k k

k k k

′ ′ ′ ′= + − + −

′ ′= + −

x x K l l B x B x

x K l l (155)

Note: (i) the term ()k k k
′−f B x in equation (154) is often called the predicted residuals

k
′v

where, in our case

k k k k k k
′ ′ ′= − = −v f B x l l (156)

 (ii) The term ()k k
′ −K l l in equation (155) is often called the corrections to the

predicted state ∆x where, in our case

 ()k k k k
′∆ = −x K l l (157)

The dynamic model (secondary model)

A dynamic model that is extremely simple and often used in navigation problems can be

developed by considering a continuous function of time, say ()y y t= . Following the

development by Cross (1987), we can use Taylor's theorem to expand the function ()y t about

the point
k

t t= into the series

 () () () ()
()

()
()

()
2 3

2! 3!

k k

k k k k k

t t t t
y t y t t t y t y t y t

− −
= + − + + +� �� ��� �

where () () (), , , etck k ky t y t y t� �� ��� are derivatives of y with respect to t evaluated at
k

t t= .

Letting
k

t t tδ= + and then
k

t t tδ = − we may write

 () () ()
()

()
()

()
()

()
2 3 4

2! 3! 4!

k k k

k k k

y t y t y t
y t t y t y t t t t tδ δ δ δ δ+ = + + + + +

�� ��� ����
� � (158)

We now have power series expression for the continuous function ()y t at the point

k
t t tδ= + involving the function y and its derivatives , , etcy y� �� , (all evaluated at

k
t) and the

time difference
k

t t tδ = − .

In a similar manner, if we assume () (), , etcy t y t� �� to be continuous functions of t then

() () ()
()

()
()

()

() () ()
()

()

() () ()

2 3

2

2! 3!

2!

etc

k k

k k k

k

k k k

k k k

y t y t
y t t y t y t t t t

y t
y t t y t y t t t

y t t y t y t t

δ δ δ δ

δ δ δ

δ δ

+ = + + + +

+ = + + +

+ = + +

��� ����
� � �� �

����
�� �� ��� �

��� ��� ���� �

 (159)

 47

Now consider two time epochs
k

t and 1k
t − separated by a time interval tδ , we can combine

equations (158) and (159) (with a change of subscripts for t) into the general matrix forms:

(i) involving terms up to y��

() []

21
2

1

1

1

0 1 k

k k

y t y t
y

y y t

δ δ

δ −

−

      
= +       

        
��

� �
 (160)

(ii) involving terms up to y���

() ()

() []

3121
6

2
21

2 1

1

1

0 1

0 0 1
k

k k

ty t t y

y t y t y

y y t

δδ δ

δ δ

δ
−

−

             = +                  

� � ���

�� ��

 (161)

(iii) involving terms up to y����

() ()

()

()

()

()
[]

42 3 11 1
242 6

32 11
62

121
2

1

1

0 1

0 0 1

0 0 0 1

k

k k

ty t t t y

y y tt t
y

y yt t
y y t

δδ δ δ

δδ δ

δ δ

δ

−

−

     
     
     = +      
     
        

� �
����

�� ��

��� ���

 (162)

In Kalman filtering and navigation problems the continuous function of time ()y y t= is

simply position so that () { }(),y t E N t= where E,N are east and north coordinates. The

derivatives are velocity, () { }(),y t E N t= � �� (rate of change of distance), acceleration,

() { }(),y t E N t= �� ���� (rate of change of velocity), jerk, () { }(),y t E N t= ��� ������ (rate of change of

acceleration) and rate of change of jerk, () { }(),y t E N t= ���� �������� . In each of the cases above

[equations (160), (161) and (162)], we can consider the vector on the left-hand-side of the

equals sign to be the vector
k

x , the state vector, or the state the system at time
k

t . The matrix

on the right-hand-side is the transition matrix T and the elements of this matrix contain the

links between the state vector at times
k

t and 1k
t − , i.e., 1k k −=x Tx . The second term in the

equations above is the product of two matrices (in these cases two vectors) and the result will

be the vector of model residuals
m

v (containing the same number of elements as the state

vector).
m

v is a reflection of the fact that the transition matrix does not fully describe the

exact physical links between the states at times
k

t and 1k
t − and

m
=v Hw where H is a

coefficient matrix and w is the system driving noise. In the equations above the system

driving noise is acceleration, jerk and rate of change of jerk respectively.

 48

We can now use these general forms to define a suitable dynamic model.

In our simple case (the ship in the channel) the state vector x contains four elements

, , ,
T

k k k k k
E N E N =  x � � and the appropriate dynamic model in the form of equation (160) is

()

()

21
2

21
2

1

1

1 0 0 0

0 1 0 0

0 0 1 0 0

0 0 0 1 0

k

k k

E t E t

N t N Et

E E Nt

N N t

−

−

 ∆ ∆     
      ∆   ∆     = +         ∆        
       ∆ 

��

� � ��

� �

 (163)

or 1k k m−= +x Tx v (164)

where T is the n,n transition matrix and
m

v is the n,1 vector of model residuals.

If we expand equation (163) we see that it is really just the matrix form of the two equations

of rectilinear motion; (i) v u at= + and (ii) 21
2

s ut at= + where s is distance, u is initial

velocity, v is final velocity, a is acceleration and t is time. In our notation they are:

 (i)
1

1

k k

k k

E E E t

N N N t

−

−

= + ∆

= + ∆

� � ��

� � ��

and (ii)
()

()

21
1 1 2

21
1 1 2

k k k

k k k

E E E t E t

N N N t N t

− −

− −

= + ∆ + ∆

= + ∆ + ∆

� ��

� ��

The model residuals
m

=v Hw are

()

()

21
2

21
2

0

0

0

0

E

N

E

N

v t

v Et

v Nt

v t

 ∆ 
  

  ∆  =     ∆    
 ∆   

�

�

��

��
 (165)

where the coefficient matrix H and the system driving noise w are

()

()

21
2

21
2

0

0
 and

0

0

t

Et

Nt

t

 ∆
 

  ∆= =   
∆   

 ∆ 

H w
��

��
 (166)

In this simple navigation problem it is assumed that the system driving noise w contains small

random accelerations caused by the sea and wind conditions, the steering of the ship, the

engine speed variation, etc.

 49

The cofactor matrix of the dynamic model
m

Q is given by

 T

m w
=Q HQ H (167)

where
w

Q , the cofactor matrix of the system driving noise, is

2

2

0

0

E

w

N

s

s

 
=  
 

Q
��

��

and 2 2,
E N

s s�� �� are the estimates of the variances of the accelerations in the east and north

directions and the covariance is assumed to be zero. Using the coefficient matrix H in

equation (166) we have

()

() ()

()

21
2

22 121
2

2
2 21

2

0

0 000

0 0 00

0

E

m

N

t

t tst

s t tt

t

 ∆
   ∆ ∆  ∆  =     ∆ ∆∆     
 ∆ 

Q
��

��

 (168)

Now we can now start the Kalman filter, but some initial values must be set beforehand.

These will be designated (a), (b), (c) etc. and then the Kalman filter steps (1), (2), (3) etc.

(a) Set the elements of the transition

matrix

1 0 0

0 1 0

0 0 1 0

0 0 0 1

t

t

∆ 
 ∆ =
 
 
 

T

 In this exercise 60sect∆ =

(b) Set the cofactor matrix of the

measurements

2

2

2

0 0

0 0

0 0

A

B

C

l

l

l

s

s

s

 
 

=  
 
 

Q

 In this exercise 2 2 2 21.0 m
A B Cl l ls s s= = =

(c) Set the cofactor matrix of the system

driving noise

2

2

0

0

E

w

N

s

s

 
=  
 

Q
��

��

 In this exercise
2 2 2 40.017 m s
E N

s s= =�� ��

(d) Set the coefficient matrix of the

system driving noise

()

()

21
2

21
2

0

0

0

0

t

t

t

t

 ∆
 
 ∆=  

∆ 
 ∆ 

H

 50

(e) Compute the cofactor matrix of the

dynamic model

 T

m w
=Q HQ H

(f) Set the starting estimates of the state

vector. This will be the filtered state

vector for epoch 2t

 1

1

7875.000 m

6319.392 m

7 m

3 m s

E

N

E s

N

   
   
   = =
   
   
   

x
�

�

(g) Set the starting estimates of the state

cofactor matrix. This will be the

filtered state cofactor matrix for epoch

2t

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

k

E

N

x

E

N

s

s

s

s

 
 
 =
 
 
  

Q
�

�

 In this exercise 2 2 220 m
E N

s s= = and

2 2 2 20.5 m s
E N

s s= =� �

Now start the Kalman filter at epoch 2t

(1) Compute the predicted state vector at

epoch 2t using the filtered estimate

1x̂

 2 1
ˆ′ =x Tx

(2) Compute the predicted state cofactor

matrix at 2t using
m

Q from step (e)

2 1

T

x x m′ = +Q TQ T Q

(3) Compute the Kalman Gain matrix

 ()
2 2

1

2 2 2

T T

x x

−

′ ′= +K Q B Q B Q B

 Using Q from step (b) and B whose

elements have been determined using

equations (151). The form of B is

given in equation (153).

(4.1) Compute the numeric terms

"computed – observed" distances

[see equation (155)]

(4.2) Compute the filtered state vector

2x̂ by updating the predicted state

 [see equation (155)]

 ()ˆ
k k k k

′ ′= + −x x K l l

(5) Compute the filtered state cofactor

matrix at 2t

 ()
2 22 2x x′= −Q I K B Q

Go to step (1) and repeat the process for

the next measurement epoch 3t .

 51

The following output from a MATLAB program kalship3.m (see Appendix) processes the data in

Table 1 in a Kalman Filter beginning at epoch 2.

>> kalship3('d:\projects\kalman\exercise\kalshipdata3.txt');

epoch = 2

Filtered State Corrns Filtered State cofactor matrix Qxx
E 8289.594 -5.406 1.009225 -0.797965 0.033097 -0.026169

N 6521.882 22.490 -0.797965 1.439797 -0.026169 0.047217

vE 6.823 -0.177 0.033097 -0.026169 0.506780 -0.000858

vN 3.738 0.738 -0.026169 0.047217 -0.000858 0.507243

epoch = 3

Filtered State Corrns Filtered State cofactor matrix Qxx

 8705.780 6.823 0.926924 -0.643621 0.030398 -0.021105

 6727.944 -18.189 -0.643621 1.218371 -0.021105 0.039955

 7.046 0.224 0.030398 -0.021105 0.494715 -0.004015

 3.141 -0.596 -0.021105 0.039955 -0.004015 0.496822

epoch = 4

Filtered State Corrns Filtered State cofactor matrix Qxx

 9124.759 -3.808 0.863463 -0.498398 0.028327 -0.016346

 6928.604 12.198 -0.498398 1.011477 -0.016346 0.033180
 6.922 -0.125 0.028327 -0.016346 0.483077 -0.006336

 3.541 0.400 -0.016346 0.033180 -0.006336 0.486133

:

:

:

epoch = 18
Filtered State Corrns Filtered State cofactor matrix Qxx

 14950.377 9.319 0.955699 0.439824 0.031474 0.014481

 9770.483 4.566 0.439824 0.822675 0.014483 0.027090

 7.134 0.307 0.031474 0.014483 0.368845 0.003650

 3.497 0.150 0.014481 0.027090 0.003650 0.371765

epoch = 19

Filtered State Corrns Filtered State cofactor matrix Qxx

E 15366.544 -11.869 0.732074 0.288579 0.024112 0.009501

N 9973.570 -6.708 0.288579 0.820826 0.009502 0.027033

vE 6.743 -0.391 0.024112 0.009502 0.364017 0.005200
vN 3.276 -0.221 0.009501 0.027033 0.005200 0.366470

epoch = 20

Filtered State Corrns Filtered State cofactor matrix Qxx

 15781.273 10.148 0.598119 0.158080 0.019704 0.005204
 10175.278 5.167 0.158080 0.847313 0.005203 0.027911

 7.077 0.334 0.019704 0.005203 0.358551 0.006055

 3.446 0.170 0.005204 0.027911 0.006055 0.361445

Filtered Values

Epoch Distance Velocity Heading
 1 0.000 7.616 66.801

 2 461.400 7.779 61.286

 3 925.806 7.715 65.975

 4 1390.357 7.775 62.905

 :
 :

 18 7872.215 7.945 63.889

 19 8335.291 7.497 64.090

 20 8796.471 7.872 64.039

>>

 52

Example 7: Global Warming – Estimating Trends in Temperature Anomalies.

The inspiration for this example of Kalman Filtering came from the blog of Andreas Hetland5

(2012), An Example of Kalman Filtering: The Surface Air Temperature Anomaly. It is a case of

using a Kalman Filter to determine a trend in what appears to be random data.

For this exercise we consider annual measurements of the so-called “surface air temperature

anomaly” in the United States from 1880 to 2014. The US surface air temperature anomaly is the

difference between the annual air temperature value and the 1951-1980 mean temperature. The

data is part of the GISTEMP6 study and is available at http://data.giss.nasa.gov/gistemp/

A plot of the data is shown in Figure 13.

Figure 13. Temperature anomalies from 1880-2014

There does not appear to be any discernible trend in the data and the authors of the study chose to

use a Centred 5-Year Moving Average as a means of uncovering a trend or signal. For a data series

1 2, , ,
n

x x x… the Centred Moving Averages
t

y for the moving average period 2 1p k= + are

1

 for 1, 2, ,
2 1

k

t t j

j k

y x t k k n k
k

+
=−

= = + + −
+
∑ … (169)

The moving average period p should be an odd number (for a 5-year moving average period 5p =

and 2k =).

5 From 2011-14 Andreas Hetland was completing his PhD in Financial Econometrics at the University of Copenhagen.

His thesis was titled: "On Particle Filter-Based Estimation and Inference for Dynamic Models with Unobserved

Variables". He is currently (April 2015) Assistant Vice President Barclays Investment Bank, London. Unfortunately,

as at September 2015, his blog seems to have disappeared.
6 Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP). The Goddard Institute is a division

of the National Aeronautics and Space Administration (NASA).

1880 1900 1920 1940 1960 1980 2000 2020
-1.5

-1

-0.5

0

0.5

1

1.5
Contiguous 48 U.S. Surface Air Temperature Anomalies 1880-2014

Year

T
e
m

p
 A

n
o
m

a
ly

 (
d
e
g
 C

)
re

la
ti
v
e
 t

o
 1

9
5
1
-1

9
8
0
 a

v
e
ra

g
e

 53

Figure 14 shows the data with the 5-Year Moving Average values as a trend line. The temperature

data begin in 1880 and end in 2014 and the period for the averages is 1882-2012.

Figure 14. Temperature anomalies with 5-Year moving Average trend line

A drawback of the Centred Moving Averages is that there are no values for the last k years in the

sequence (2013, 2014) and the trend line is not very smooth. A Kalman Filter, described below,

may offer a better alternative.

The sequence of measurements (the anomalies in OC) at times 1 2 3, , , etc.t t t … are

 0.4656, 0.0693, 0.0067, 0.8181,− − − …

where 1 1880t = , 2014
END

t = and there are 2014 1880 1 135− + = measurement epochs. The

measurements (affected by random errors), and residuals can be expressed as

 ˆ
k k k

+ =l v l (170)

where
k

l is the n,1 vector of measurements,
k

v is the n,1 vector of residuals (small unknown

corrections to the measurements) and ˆ
k

l are estimates of the true (but unknown) value of the

measurements. n is the number of measurements at each epoch, that in this case is one. The

primary measurement model can be expressed in terms of the filtered state vector ˆ
k

x at time
k

t as

 ˆ
k k k k

+ =v B x f (171)

In this case ˆ
k

x contains the elements of ˆ
k

l , both vectors containing only single quantities. And

k k
= −f l also both containing single quantities (the anomalies at

k
t). The matrix B will contain a

single quantity, []1= −B .

1880 1900 1920 1940 1960 1980 2000 2020
-1.5

-1

-0.5

0

0.5

1

1.5

Contiguous 48 U.S. Surface Air Temperature Anomalies 1880-2014

with centred 5-Year Moving Average

Year

T
e
m

p
 A

n
o
m

a
ly

 (
d
e
g
 C

)
re

la
ti
v
e
 t

o
 1

9
5
1
-1

9
8
0
 a

v
e
ra

g
e

 54

The dynamic model linking the elements of the state vector at times 1k
t − and

k
t is

 1k k m−= +x Tx v (172)

The state vector contains a single element that may change between 1k
t − and

k
t but the dynamics

are unknown and changes will be due to measurement error and model error. The transition matrix

T will contain a single element []1=T and the model correction
m

=v Hw is a single element

vector containing a random quantity. By setting []1=H the model correction is equal to the system

driving noise, i.e.,
m

=v w . We can “assign” an appropriate estimate of the standard deviation
w

s

and the cofactor matrix 2

w w
s =  Q is now defined, and by cofactor propagation [see (115)], the

cofactor matrix of the dynamic model
m w

=Q Q . We choose 0.1
w

s = which gives []0.01w =Q

Lastly, an estimate of the cofactor matrix of the measurements Q and the filtered state cofactor

matrix
kx

Q must be made. Let us assume (guess) that the measurements have a standard deviation

of 0.5
l

s = and []2 0.5
l

s = = Q . Also, since our primary measurement model has a state vector

containing a single value (the measurement), then
x

Q will only contain a single value, and we have

as a starting estimate []
1

0.5x =Q , the same as Q.

Now we can now start the Kalman filter at epoch 2t using the values at 1t as filtered estimates.

(1) Compute the predicted state vector at

epoch 2t using the measurement

−0.4656 at 1t as the filtered state 1x̂

 [][]
2 1

ˆ

1 0.4656

0.4656

′ =

= −

= −

x Tx

(2) Compute the predicted state cofactor

matrix at 2t using []
1

0.5x =Q as the

filtered estimate

 [][][] []

[]

2 1

1 0.5 1 0.01

0.51

T

x x m′ = +

= +

=

Q TQ T Q

(3) Compute the Kalman Gain matrix

noting that []0.5=Q

()
[][]

[] [][][]()

[][]

1

2 2

1

2 2 2

1

0.51 1

0.5 1 0.51 1

0.51 1.01

0.504950

T T

x x

−

−

′ ′

−

−

× + − −

= +

=

= −

= −

K Q B Q B Q B

(4) Compute the filtered state vector 2x̂ by

updating the predicted state with the

measurements at 2t

()

[] []{

[] [][]()}

2 2 2 2 2

0.4656 0.504950

0.0693 1 0.4656

ˆ

0.1955

− + −

− − − −

′ ′= + −

=

×

= −

x x K f B x

 55

(5) Compute the filtered state cofactor

matrix at 2t

()

[] [][]()[]
2 22 2

1 0.504950 1 0.51

0.252476

x x′= −

= − − −

=

Q I K B Q

Go to step (1) and repeat the process

for the next measurement epoch 3t .

The values from the Kalman filter for epochs 3 4 5, and t t t are

epoch 3t epoch 4t epoch 5t

3

3

3

3

3

ˆ

0.1955

0.262475

0.344241

ˆ 0.1305

0.172121

x

x

′

′ = −

=

= −

= −

=

x

Q

K

x

Q

4

4

4

4

4

ˆ

0.1305

0.182121

0.266991

ˆ 0.3141

0.133496

x

x

′

′ = −

=

= −

= −

=

x

Q

K

x

Q

5

5

5

5

5

ˆ

0.3141

0.143496

0.222994

ˆ 0.3788

0.111497

x

x

′

′ = −

=

= −

= −

=

x

Q

K

x

Q

A MATLAB function global_warming_filter.m (see Appendix) with a data file containing the

surface air temperature anomaly for the 48 contiguous United States for 1880-2014 (derived

from GISTEMP study data at: http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.D.txt) gives

the following output

>> global_warming_filter

Epoch = 2, Year = 1881, measurement = 0.0693

Filtered State Corrn Filtered State cofactor matrix Qxx

 -0.1955 0.2701 0.252475248

Epoch = 3, Year = 1882, measurement = -0.0067
Filtered State Corrn Filtered State cofactor matrix Qxx

 -0.1305 0.0650 0.172120504

Epoch = 4, Year = 1883, measurement = -0.8181

Filtered State Corrn Filtered State cofactor matrix Qxx

 -0.3141 -0.1836 0.133495843

Epoch = 5, Year = 1884, measurement = -0.6041

Filtered State Corrn Filtered State cofactor matrix Qxx

 -0.3788 -0.0647 0.111497102

:
:

:

 56

:

:
Epoch = 131, Year = 2010, measurement = 0.5946

Filtered State Corrn Filtered State cofactor matrix Qxx

 0.6143 -0.0030 0.065887234

Epoch = 132, Year = 2011, measurement = 0.6747

Filtered State Corrn Filtered State cofactor matrix Qxx
 0.6222 0.0080 0.065887234

Epoch = 133, Year = 2012, measurement = 1.8681

Filtered State Corrn Filtered State cofactor matrix Qxx

 0.7864 0.1642 0.065887234

Epoch = 134, Year = 2013, measurement = 0.2093

Filtered State Corrn Filtered State cofactor matrix Qxx

 0.7104 -0.0760 0.065887234

Epoch = 135, Year = 2014, measurement = 0.2816
Filtered State Corrn Filtered State cofactor matrix Qxx

 0.6539 -0.0565 0.065887234

Figure 15 shows the surface air temperature anomalies (for the 48 contiguous United States)

with the Kalman Filter estimates of the anomaly shown as the varying black line. In this case,

these estimates are referred to as the signal and it appears to have a general upward trend from

1980 onwards. It may indicate a warming trend for the contiguous 48 United States which

accounts for 1.6% of the earth’s surface.

Figure 15. Temperature anomalies with signal from a Kalman Filter

1880 1900 1920 1940 1960 1980 2000 2020
-1.5

-1

-0.5

0

0.5

1

1.5

Contiguous 48 U.S. Surface Air Temperature Anomalies 1880-2014

with signal (Kalman Filter)

Year

T
e
m

p
 A

n
o
m

a
ly

 (
d
e
g
 C

)
re

la
ti
v
e
 t

o
 1

9
5
1
-1

9
8
0
 a

v
e
ra

g
e

57

Data from the GISTEMP study is shown below. The data file required for the MATLAB function

global_warming_filter.m is derived from this data and uses only Year and Annual Mean values.

Contiguous 48 U.S. Surface Air Temperature Anomaly (C)

year Annual_Mean 5-year_Mean

1880 -0.4656 *

1881 0.0693 *

1882 -0.0067 -0.3650

1883 -0.8181 -0.4022
1884 -0.6041 -0.5074

1885 -0.6516 -0.5487

1886 -0.4563 -0.4715

1887 -0.2135 -0.3047

1888 -0.4319 -0.1533
1889 0.2296 -0.1203

1890 0.1056 -0.1749

1891 -0.2914 -0.2122

1892 -0.4865 -0.2249

1893 -0.6183 -0.3776

1894 0.1661 -0.2767
1895 -0.6577 -0.1899

1896 0.2127 -0.0892

1897 -0.0525 -0.1915

1898 -0.1144 0.0626

1899 -0.3457 0.0382
1900 0.6131 0.0411

1901 0.0905 -0.0490

1902 -0.0379 -0.0509

1903 -0.5649 -0.2553

1904 -0.3552 -0.2727

1905 -0.4088 -0.2966
1906 0.0035 -0.1496

1907 -0.1576 -0.1184

1908 0.1699 0.0354

1909 -0.1991 0.0651

1910 0.3602 -0.0774
1911 0.1519 -0.1336

1912 -0.8701 -0.0822

1913 -0.1109 -0.1831

1914 0.0580 -0.3103

1915 -0.1444 -0.3281

1916 -0.4841 -0.2953
1917 -0.9593 -0.3317

1918 0.0534 -0.3834

1919 -0.1241 -0.0635

1920 -0.4031 0.1584

1921 1.1156 0.1331
1922 0.1502 0.0254

1923 -0.0731 0.1842

1924 -0.6626 -0.0280

year Annual_Mean 5-year_Mean

1925 0.3910 -0.0192

1926 0.0546 0.0092

1927 0.1940 0.0354

1928 0.0689 -0.0194
1929 -0.5315 0.1688

1930 0.1170 0.1263

1931 0.9957 0.2456

1932 -0.0185 0.5966

1933 0.6653 0.5794
1934 1.2236 0.4127

1935 0.0308 0.3892

1936 0.1621 0.4114

1937 -0.1360 0.3261

1938 0.7767 0.3251

1939 0.7967 0.3963
1940 0.0260 0.4310

1941 0.5180 0.3031

1942 0.0375 0.1530

1943 0.1371 0.1398

1944 0.0466 0.1616
1945 -0.0403 0.1630

1946 0.6273 0.1140

1947 0.0444 0.1355

1948 -0.1082 0.0937

1949 0.1544 -0.1126

1950 -0.2492 -0.0686
1951 -0.4044 0.1246

1952 0.2645 0.2550

1953 0.8578 0.2919

1954 0.8065 0.4248

1955 -0.0647 0.3967
1956 0.2597 0.2343

1957 0.1243 0.1005

1958 0.0457 0.0670

1959 0.1376 0.0154

1960 -0.2321 -0.0103

1961 0.0013 0.0189
1962 -0.0040 -0.0295

1963 0.1917 -0.0073

1964 -0.1044 -0.0528

1965 -0.1213 -0.0694

1966 -0.2261 -0.1681
1967 -0.0871 -0.1883

1968 -0.3018 -0.1921

1969 -0.2054 -0.1683

year Annual_Mean 5-year_Mean

1970 -0.1402 -0.2117

1971 -0.1071 -0.1025

1972 -0.3041 -0.0225

1973 0.2442 -0.0332
1974 0.1945 -0.0598

1975 -0.1935 0.0758

1976 -0.2400 -0.0671

1977 0.3736 -0.2159

1978 -0.4702 -0.1265
1979 -0.5493 0.0562

1980 0.2536 -0.0797

1981 0.6732 0.0184

1982 -0.3059 0.1386

1983 0.0203 0.0167

1984 0.0519 0.0341
1985 -0.3559 0.2569

1986 0.7599 0.3287

1987 0.8083 0.3007

1988 0.3794 0.5527

1989 -0.0884 0.5398
1990 0.9044 0.4475

1991 0.6953 0.2979

1992 0.3468 0.4215

1993 -0.3684 0.3251

1994 0.5293 0.1762

1995 0.4226 0.1374
1996 -0.0495 0.4759

1997 0.1531 0.5874

1998 1.3242 0.6458

1999 1.0868 0.8441

2000 0.7143 0.9509
2001 0.9423 0.8272

2002 0.6869 0.7348

2003 0.7059 0.7759

2004 0.6246 0.8488

2005 0.9197 0.9005

2006 1.3067 0.7931
2007 0.9454 0.7112

2008 0.1693 0.6462

2009 0.2151 0.5198

2010 0.5946 0.7044

2011 0.6747 0.7124
2012 1.8681 0.7257

2013 0.2093 *

2014 0.2816 *

Anomalies and centred 5-Year Moving Averages for 1880-2014 from

http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.D.txt

Anomalies referenced to absolute global mean temperature for 1951-1980 of 14.0 deg-C

58

REFERENCES

*Bossler, John D. 1972, 'Bayesian Inference in Geodesy', Ph.D. Dissertation, Department of Geodetic

Science, Ohio State University, Columbus, Ohio, USA.

Brown, R.G. and Hwang, P.Y.C, 1992, Introduction to Random Signals and Applied Kalman

Filtering, 2nd ed., John Wiley & Sons, New York.

*Cross, P.A. 1992, Advanced Least Squares Applied to Position Fixing, Working Paper No. 6,

Department of Land Information, University of East London.

 https://seabedhabitats.files.wordpress.com/2011/10/cross_1994.pdf (accessed 10-Aug-2015)

*Gauss, C.F. 1809, Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic

Sections, a translation of Theoria Motus Corporum Coelestium in sectionibus conicis solem

ambientium by C.H. Davis, Dover, New York, 1963.

Hetland, A, 2012, An Example of Kalman Filtering: The Surface Temperature Anomaly, Andreas

Hetlannds Blog, published 29-Apr-2012, viewed 04-Apr-2015,

 http://andreashetland.com/blog/2012/04/an-example-of-kalman-filtering-the-surface-air-

temperature -anomaly/

*Kalman, R.E. 1960, 'A new approach to linear filtering and prediction', Journal of Basic

Engineering, American Society of Mechanical Engineers (ASME), Series 82D, pp. 35-45,

March 1960.

*Krakiwsky, E.J. 1975, A Synthesis of Recent Advances in the Method of Least Squares, Lecture

Notes No. 42, 1992 reprint, Department of Surveying Engineering, University of New

Brunswick, Fredericton, Canada

*Leahy, F.J. 1974, 'Two hundred years of adjustment of survey measurements', Two Centuries of

Surveying: Proceedings of the 17th Australian Survey Congress, Melbourne, 23 Feb. − 4 Mar.

1974, Institution of Surveyors, Australia, pp.19-29.

*Merriman, M. 1905, Method of Least Squares, 8th edn, John Wiley & Sons, New York.

*Mikhail, E.M. 1976, Observations and Least Squares, IEP−A Dun-Donnelley, New York.

*Mikhail, E.M. and Gracie, G., 1981, Analysis and Adjustment of Survey Measurements, Van

Nostrand Reinhold Company, New York.

*Wells, D.E. and Krakiwsky, E.J. 1971. The Method of Least Squares. Lecture Notes No. 18,

Department of Surveying Engineering, University of New Brunswick, May 1971, reprinted

September 1992, 180 pages.

Sorenson, Harold W. 1985, Kalman Filtering: Theory and Application, The Institute of Electrical

and Electronics Engineers (IEEE) Press selected reprint series, Editor Harold W. Sorenson,

IEEE Press, New York.

59

APPENDIX: MATLAB FUNCTIONS

MATLAB function least_squares.m

function least_squares

%

% LEAST_SQUARES reads an ASCII textfile containing data for a least squares
% adjustment of indirect observations in the matrix form v + Bx = f where

% v is an n,1 vector of residuals, B is an n,u coefficient matrix, x is a

% u,1 vector of unknowns and f is an n,1 vector of constant terms. n is

% the number of equations and u is the number of unknowns. The data textfile

% contains n rows of data with u+2 columns. The elements of B are

% contained in the first u columns. The numeric terms (f) is contained in
% column u+1 and the weight of each observation is contained in column

% u+2. Results are written to a textfile having the same path and name as

% the data file but with the extension ".out"

%==
% Function: least_squares

%

% Author:

% Rod Deakin,

% Department of Geospatial Science, RMIT University,

% GPO Box 2476V, MELBOURNE VIC 3001
% AUSTRALIA

% email: randm.deakin@gmail.com

%

% Date:

% Version 1.0 14 April 2003
% Version 1.1 9 June 2003

% Version 1.1a 12 August 2015 (Change of email address)

%

% Remarks:

% This function reads numeric data from a textfile containing data for a

% least squares adjustment of indirect observations in the form of
% v + Bx = f where v is an n,1 vector of residuals, B is an n,u matrix of

% coefficients, x in a u,1 vector of unknown parameters and f is an n,1

% vector of numeric terms. n is the number of equations and u is the

% number of unknowns. The data text file contains n rows of data in u+2

% columns. Column u+1 are the numeric terms, column u+2 are the weights
% of each observation. Results are written to a textfile having the same

% path name as the data file but with the extension ".out"

%

% Arrays:

% B - (n,u) coeff matrix of observation equation v + Bx = f

% f - (n,1) vector of numeric terms
% N - (u,u) coefficient matrix of Normal equations Nx = t

% Ninv - (u,u) inverse of N

% Qxx - (u,u) cofactor matrix of unknowns

% Qvv - (n,n) cofactor matrix of residuals

% Qll - (n,n) cofactor matrix of adjusted measurements
% t - (u,1) vector of numeric terms of Normal equations Nx = t

% v - (n,1) vector of residuals

% W - (n,n) weight matrix

% w - (n,1) vector of weights

% x - (u,1) vector of solutions

%
% Variables

% n - number of equations

% u - number of unknowns

% vfact - variance factor

%

60

% References:

% Notes on Least Squares (2003), Department of Geospatial Science, RMIT

% University, 2003

%

%==

%---

% 1. Call the User Interface (UI) to choose the input data file name

% 2. Concatenate strings to give the path and file name of the input file

% 3. Strip off the extension from the file name to give the rootName

% 4. Add extension ".out" to rootName to give the output filename
% 5. Concatenate strings to give the path and file name of the output file

%---

filepath = strcat('d:\temp\','*.txt');

[infilename,inpathname] = uigetfile(filepath);

infilepath = strcat(inpathname,infilename);

rootName = strtok(infilename,'.');
outfilename = strcat(rootName,'.out');

outfilepath = strcat(inpathname,outfilename);

%--

% 1. Load the data into an array whose name is the rootName
% 2. set fileTemp = rootName

% 3. Copy columns of data into individual arrays

%--

load(infilepath);

fileTemp = eval(rootName);

% get the number of rows (n) and the number of columns (m)
[n,m] = size(fileTemp);

% set the number of unknowns

u = m-2;

% copy the data into B, f and w

B = fileTemp(:,1:u);
f = fileTemp(:,u+1);

w = fileTemp(:,m);

% set the elements of the weight matrix W

W = zeros(n,n);

for k = 1:n
 W(k,k) = w(k);

end

% form the normal equation coefficient matrix N

N = B'*W*B;

% form the vector of numeric terms t

t = B'*W*f;

% solve the system Nx = t for the unknown parameters x

Ninv = inv(N);
x = Ninv*t;

% compute residuals

v = f - (B*x);

% compute the variance factor

vfact = (f'*W*f - x'*t)/(n-u);

% compute the cofactor matrix of the adjusted quantities

Qxx = Ninv;

% compute the cofactor matrix of the residuals

Qvv = inv(W)-B*Ninv*B';

% compute the cofactor matrix of the adjusted quantities

Qll = inv(W)-Qvv;

61

% open the output file print the data

fidout = fopen(outfilepath,'wt');

fprintf(fidout,'\n\nLeast Squares Adjustment of Indirect Observations');

fprintf(fidout,'\n\nInput Data');

fprintf(fidout,'\n\nCoefficient matrix B of observation equations v + Bx = f');
for j = 1:n

 fprintf(fidout,'\n');

 for k = 1:u

 fprintf(fidout,'%15.6f',B(j,k));

 end
end

fprintf(fidout,'\n\nVector of numeric terms f and weights w of observation equations v + Bx =

f');

for k = 1:n

 fprintf(fidout,'\n%15.6f %15.6f',f(k,1),w(k));
end

fprintf(fidout,'\n\nCoefficient matrix N of Normal equations Nx = t');

fprintf(fidout,'\n(upper triangular part)');

for j = 1:u
 fprintf(fidout,'\n');

 count = 0;

 for k = j:u

 if count > 4

 count = 0;

 fprintf(fidout,'\n');
 end

 fprintf(fidout,'%15.6f',N(j,k));

 count = count + 1;

 end

end

fprintf(fidout,'\n\nVector of numeric terms t of Normal equations Nx = t');

for k = 1:u

 fprintf(fidout,'\n%15.6f',t(k,1));

end

fprintf(fidout,'\n\nInverse of Normal equation coefficient matrix');

fprintf(fidout,'\n(upper triangular part)');

for j = 1:u

 fprintf(fidout,'\n');

 count = 0;
 for k = j:u

 if count > 4

 count = 0;

 fprintf(fidout,'\n');

 end

 fprintf(fidout,'%16.4e',Ninv(j,k));
 count = count + 1;

 end

end

fprintf(fidout,'\n\nVector of solutions x');
for k = 1:u

 fprintf(fidout,'\n%20.9e',x(k,1));

end

fprintf(fidout,'\n\nVector of residuals v');

for k = 1:n
 fprintf(fidout,'\n%12.6f',v(k,1));

end

fprintf(fidout,'\n\nVariance factor = %10.6e',vfact);

62

fprintf(fidout,'\n\nCofactor matrix of unknowns Qxx');

fprintf(fidout,'\n(upper triangular part)');

for j = 1:u

 fprintf(fidout,'\n');

 count = 0;

 for k = j:u
 if count > 4

 count = 0;

 fprintf(fidout,'\n');

 end

 fprintf(fidout,'%16.4e',Qxx(j,k));
 count = count + 1;

 end

end

fprintf(fidout,'\n\nCofactor matrix of residuals Qvv');

fprintf(fidout,'\n(upper triangular part)');
for j = 1:n

 fprintf(fidout,'\n');

 count = 0;

 for k = j:n

 if count > 4
 count = 0;

 fprintf(fidout,'\n');

 end

 fprintf(fidout,'%16.4e',Qvv(j,k));

 count = count + 1;

 end
end

fprintf(fidout,'\n\nCofactor matrix of adjusted observations Qll');

fprintf(fidout,'\n(upper triangular part)');

for j = 1:n
 fprintf(fidout,'\n');

 count = 0;

 for k = j:n

 if count > 4

 count = 0;

 fprintf(fidout,'\n');
 end

 fprintf(fidout,'%16.4e',Qll(j,k));

 count = count + 1;

 end

end

fprintf(fidout,'\n\n');

% close the output file

fclose(fidout);

63

Help message for MATLAB function least_squares.m

>> help least_squares

 least_squares reads an ASCII textfile containing data for a least squares

 adjustment of indirect observations in the matrix form v + Bx = f where
 v is an n,1 vector of residuals, B is an n,u coefficient matrix, x is a

 u,1 vector of unknowns and f is an n,1 vector of constant terms. n is

 the number of equations and u is the number of unknowns. The data textfile

 contains n rows of data with u+2 columns. The elements of B are

 contained in the first u columns. The numeric terms (f) is contained in

 column u+1 and the weight of each observation is contained in column
 u+2. Results are written to a textfile having the same path and name as

 the data file but with the extension ".out"

>>

Data file (Example_1.txt) for MATLAB function least_squares.m

% Data file for function "least_squares.m"

% Example 1: best fit line
% B(1) B(2) f w

 40.0 -1 24.0 2

 15.0 -1 24.0 5

 -10.0 -1 12.0 7

 -38.0 -1 -15.0 3
 -67.0 -1 -30.0 3

Output file (Example_1.out) from MATLAB function least_squares.m

Least Squares Adjustment of Indirect Observations

Input Data

Coefficient matrix B of observation equations v + Bx = f
 40.000000 -1.000000

 15.000000 -1.000000

 -10.000000 -1.000000

 -38.000000 -1.000000

 -67.000000 -1.000000

Vector of numeric terms f and weights w of observation equations v + Bx = f

 24.000000 2.000000

 24.000000 5.000000

 12.000000 7.000000

 -15.000000 3.000000
 -30.000000 3.000000

Coefficient matrix N of Normal equations Nx = t

(upper triangular part)

 22824.000000 230.000000

 20.000000

Vector of numeric terms t of Normal equations Nx = t

 10620.000000

 -117.000000

Inverse of Normal equation coefficient matrix

(upper triangular part)

 4.9556e-05 -5.6990e-04

 5.6554e-02

Vector of solutions x

 5.929679370e-01
 -1.266913128e+01

64

Vector of residuals v

 -12.387849

 2.436350

 5.260548

 -5.136350

 -2.940279

Variance factor = 2.117974e+02

Cofactor matrix of unknowns Qxx

(upper triangular part)
 4.9556e-05 -5.6990e-04

 5.6554e-02

Cofactor matrix of residuals Qvv

(upper triangular part)

 3.1856e-01 -1.1763e-01 -5.3828e-02 1.7632e-02 9.1645e-02
 1.1520e-01 -5.1970e-02 -1.5199e-02 2.2885e-02

 9.2746e-02 -4.8030e-02 -4.5874e-02

 2.4853e-01 -1.2289e-01

 1.3069e-01

Cofactor matrix of adjusted observations Qll

(upper triangular part)

 1.8144e-01 1.1763e-01 5.3828e-02 -1.7632e-02 -9.1645e-02

 8.4801e-02 5.1970e-02 1.5199e-02 -2.2885e-02

 5.0112e-02 4.8030e-02 4.5874e-02

 8.4801e-02 1.2289e-01
 2.0265e-01

Cofactor matrix of residuals Qvv

(upper triangular part)

 4.2118e-01 -3.9669e-01 -2.1457e-01 -1.0591e-02 2.0067e-01
 6.9787e-01 -2.0757e-01 -1.0165e-01 8.0415e-03

 7.9944e-01 -1.9272e-01 -1.8459e-01

 7.0530e-01 -4.0034e-01

 3.7621e-01

Cofactor matrix of adjusted observations Qll
(upper triangular part)

 5.7882e-01 3.9669e-01 2.1457e-01 1.0591e-02 -2.0067e-01

 3.0213e-01 2.0757e-01 1.0165e-01 -8.0415e-03

 2.0056e-01 1.9272e-01 1.8459e-01

 2.9470e-01 4.0034e-01
 6.2379e-01

65

MATLAB function linear_regression_CLS.m

function linear_regression_CLS

%
% linear_regression_CLS is a function that fits a straight line y = b*x + c

% to a set of x,y data points using Combined Least Squares that allows

% for proper consideration of variances and covariances of the x,y data.

% The function reads an ASCII textfile containing coordinate pairs (x,y)

% standard deviations (sx,sy) and covariance (sxy). In addition point

% name is included in the textfile.
% Part of an ASCII textfile is shown below

%

% Data for Example 2

%

% Serial x sd_x y sd_y covariance
% 1 -40.0 1.414213562 -24.0 1.732050808 0.5

% 2 -15.0 2.828427125 -24.0 2.236067978 -4.0

% 3 10.0 2.828427125 -12.0 2.645751311 -3.0

% 4 38.0 1.0 15.0 1.414213562 0.5

% 5 67.0 2.449489743 30.0 3.464101615 1.0

%
% Results are written to a textfile having the same path and name as the

% data file but with the extension ".out"

%==

% Function: linear_regression_CLS
%

% Author:

% Rod Deakin,

% BONBEACH VIC 3196

% AUSTRALIA

% email: randm.deakin@gmail.com
%

% Date:

% Version 1.0 10 November 2014

% Version 1.1 12 August 2015

%
% Remarks:

% This function reads numeric data from a textfile containing coordinate

% pairs (x,y) standard deviation and covariances associated with each pair

% and computes the parameters m and c of a line of best fit y = b*x + c

% using Combined Least Squares. This allows proper consideration of the
% standard deviations and covariances of the measurements (x,y coords).

% Results are written to the screen and to textfile having the same path

% and name as the data file but with the extension ".out"

%

% Arrays:

% A - (m,n) coeff matrix of observation equations A*v + B*x = f
% B - (m,u) coeff matrix of observation equations A*v + B*x = f

% f - (m,1) vector of numeric terms

% k - (m,1) vector of Lagrange multipliers k = We*(f-B*x)

% N - (u,u) coefficient matrix of Normal equations N*x = t and

% N = Bt*We*B
% Ninv - (u,u) inverse of coefficient matrix of Normal equations

% Q - (n,n) matrix of estimates of variances and covariances

% Qll - (n,n) cofactor matrix of adjusted observations

% Qvv - (n,n) cofactor matrix of residuals

% We - (m,m) equivalent weight matrix We = inv(A*Q*At)

% x_coord - (m,1) vector of x coordinates
% y_coord - (m,1) vector of y coordinates

% serial - (m,1) vector of station serial numbers

% sx - (m,1) vector of st. dev's of x coordinates

% sxy - (m,1) vector of covariances between x and y coordinates

% sy - (m,1) vector of st. dev's of y coordinates
% t - (u,1) vector of numeric terms of Normal equations N*x = t and

% t = Bt*We*f

66

% v - (n,1) vector of residuals v = Q*At*k

% W - (n,n) matrix of weight coefficients W = inv(Q)

% x - (u,1) vector of solutions x = Ninv*t

%

% Variables

% b - b = tan(theta) = (y2-y1)/(x2-x1) = slope of straight line
% b0 - approximate value of slope of straight line

% c - point on y-axis where straight line intersects

% db - small correction to slope of line b = b0 + db

% eps - small quantity for testing for convergence

% iter - iteration count
% m - number of observation equations equal to number of (x,y) pairs

% n - number of observations (or measurements)

% u - number of unknowns (parameters m and c)

% i,j,kk - integer counters

% vfact - variance factor

% xc,yc - x and y centroids (averages)
% x1,x2 - x coords of first and last data points

% y1,y2 - y coords of first and last data points

%

% References:

% Deakin, R.E., 2014, 'Linear Regression Using Combined Least Squares',
% Private Notes, Bonbeach VIC 3196, Version 1, 03-Nov-2014

%

%==

%---

% 1. Call the User Interface (UI) to choose the input data file name
% 2. Concatenate strings to give the path and file name of the input file

% 3. Strip off the extension from the file name to give the rootName

% 4. Add extension ".out" to rootName to give the output filename

% 5. Concatenate strings to give the path and file name of the output file

%---
filepath = strcat('d:\temp\','*.txt');

[infilename,inpathname] = uigetfile(filepath);

infilepath = strcat(inpathname,infilename);

rootName = strtok(infilename,'.');

outfilename = strcat(rootName,'.out');

outfilepath = strcat(inpathname,outfilename);

%--

% 1. Load the data into an array whose name is the rootName

% 2. set fileTemp = rootName

% 3. Copy columns of data into individual arrays
%--

load(infilepath)

fileTemp = eval(rootName);

serial = fileTemp(:,1);

x_coord = fileTemp(:,2);

sx = fileTemp(:,3);
y_coord = fileTemp(:,4);

sy = fileTemp(:,5);

sxy = fileTemp(:,6);

%--

% Determine the adjustment constants m, n and u
%--

% determine the number of observation equations

m = length(x_coord);

% set the number of measurements

n = 2*m;

% set the number of unknowns
u = 2;

67

%--

% Print heading and given data

%--

% open the output file print the data

fidout = fopen(outfilepath,'wt');

fprintf(fidout,'\n\n Linear Regression Using Combined Least Squares');
fprintf(fidout,'\n ==');

fprintf(fidout,'\n solution for the parameters b and c in the equation for the line of best

fit');

fprintf(fidout,'\n y = b*x + c where b = tan(theta) is the slope and c is the intercept on the

y-axis');
fprintf(fidout,'\n\n Input Data');

fprintf(fidout,'\n Serial x sx y sy sxy');

for kk = 1:m

 fprintf(fidout,'\n %4d %12.4f %8.6f %12.4f %8.6f %9.6f',...

 serial(kk,1),x_coord(kk,1),sx(kk,1),y_coord(kk,1),...

 sy(kk,1),sxy(kk,1));
end

fprintf(fidout,'\n\n there are n = %2d measurements (the x,y coordinates),',n);

fprintf(fidout,'\n m = %2d observation equations and u = %2d unknowns in the',m,u);

fprintf(fidout,'\n system of equations A*v + B*x = f');

%--
% set the elements of the cofactor matrix of observations Q

%--

Q = zeros(n,n);

for kk = 1:m

 j = 2*kk;

 Q(j-1,j-1) = sx(kk,1)^2; % variance x = (sx)^2
 Q(j-1,j) = sxy(kk,1); % covariance

 Q(j,j-1) = Q(j-1,j); % covariance

 Q(j,j) = sy(kk,1)^2; % variance y = (sy)^2

end

%--
% Reduce the coordinates to a centroidal system

%--

xc = sum(x_coord)/m;

yc = sum(y_coord)/m;

x_coord = x_coord-xc;

y_coord = y_coord-yc;
%--

% form the coefficient matrix B of the observation equation A*v +B*x = f

%--

B = zeros(m,u);

for kk = 1:m
 B(kk,1) = -x_coord(kk,1);

 B(kk,2) = -1.0;

end

%--

% set approximate value for slope b0 where b = b0 + db and db is a small

% correction. b = tan(theta) = (y2-y1)/(x2-x1)
%--

y1 = y_coord(1,1);

y2 = y_coord(m,1);

x1 = x_coord(1,1);

x2 = x_coord(m,1);
b0 = (y2-y1)/(x2-x1);

%--

% Solution of least squares estimates by iteration

%--

% while loop for the computation of solution vector x where x(1,1) = db
% and x(2,1) = c. Break from while loop when abs(db) < eps

% set the smmal increment to the slope where b = b0 + db

db = 10;

% set the iteration number

iter = 1;

68

% set eps, a small quantity

eps = 1.0e-8;

while 1

 iter;

 if abs(db)<eps

 break
 end

 if iter > 10

 break

 end

 % form the coefficient matrix A of observation equations A*v + B*x = f
 A = zeros(m,n);

 for kk = 1:m

 j = 2*kk;

 A(kk,j) = 1.0;

 A(kk,j-1) = -b0;

 end
 % form the vector of numeric terms f

 f = zeros(m,1);

 for kk = 1:m

 f(kk,1) = b0*x_coord(kk,1)-y_coord(kk,1);

 end
 % form ther equivalent weight matrix We

 We = inv(A*Q*A');

 % form the normal equation coefficient matrix N

 N = B'*We*B;

 % form the vector of numeric terms t

 t = B'*We*f;
 % solve the system Nx = t for the unknown parameters x

 Ninv = inv(N);

 x = Ninv*t;

 if iter == 1
 % print matrices A, B, f, Q, We, N, t and x

 fprintf(fidout,'\n\n System of equations and solution for first iteration');

 fprintf(fidout,'\n where approximate slope b0 = % 12.9f',b0);

 fprintf(fidout,'\n Coordinates have been reduced to a centroidal system');

 fprintf(fidout,'\n The * symbol indicates new row of a matrix');

 fprintf(fidout,'\n Coefficient matrix A');
 for i = 1:m

 kk = 1;

 fprintf(fidout,'\n* ');

 for j = 1:n

 if (kk > 6)
 fprintf(fidout,'\n ');

 kk = 1;

 end

 fprintf(fidout,'% 12.9f ',A(i,j));

 kk = kk+1;

 end
 end

 fprintf(fidout,'\n Coefficient matrix B');

 for i = 1:m

 kk = 1;

 fprintf(fidout,'\n* ');
 for j = 1:u

 if (kk > 6)

 fprintf(fidout,'\n ');

 kk = 1;

 end

 fprintf(fidout,'% 12.9f ',B(i,j));
 kk = kk+1;

 end

 end

 fprintf(fidout,'\n Vector f-transposed');

 kk = 1;
 fprintf(fidout,'\n ');

69

 for i = 1:m

 if (kk > 6)

 fprintf(fidout,'\n ');

 kk = 1;

 end

 fprintf(fidout,'% 12.9f ',f(i,1));
 kk = kk+1;

 end

 fprintf(fidout,'\n Cofactor matrix Q');

 for i = 1:n

 kk = 1;
 fprintf(fidout,'\n* ');

 for j = 1:n

 if (kk > 6)

 fprintf(fidout,'\n ');

 kk = 1;

 end
 fprintf(fidout,'% 12.9f ',Q(i,j));

 kk = kk+1;

 end

 end

 fprintf(fidout,'\n Equivalent weight matrix We = inv(A*Q*At)');
 for i = 1:m

 kk = 1;

 fprintf(fidout,'\n* ');

 for j = 1:m

 if (kk > 6)

 fprintf(fidout,'\n ');
 kk = 1;

 end

 fprintf(fidout,'% 15.9f ',We(i,j));

 kk = kk+1;

 end
 end

 fprintf(fidout,'\n Matrix N = Bt*We*B');

 for i = 1:u

 kk = 1;

 fprintf(fidout,'\n* ');

 for j = 1:u
 if (kk > 6)

 fprintf(fidout,'\n ');

 kk = 1;

 end

 fprintf(fidout,'% 18.9f ',N(i,j));
 kk = kk+1;

 end

 end

 fprintf(fidout,'\n Vector t-transposed where t = Bt*We*f');

 kk = 1;

 fprintf(fidout,'\n ');
 for i = 1:u

 if (kk > 6)

 fprintf(fidout,'\n ');

 kk = 1;

 end
 fprintf(fidout,'% 12.9f ',t(i,1));

 kk = kk+1;

 end

 fprintf(fidout,'\n Vector of solutions x-transposed where x = Ninv*t');

 kk = 1;

 fprintf(fidout,'\n ');
 for i = 1:u

 if (kk > 6)

 fprintf(fidout,'\n ');

 kk = 1;

 end
 fprintf(fidout,'% 12.9f ',x(i,1));

70

 kk = kk+1;

 end

 end

 % update value of b0

 db = x(1,1);

 b0 = b0+db;
 % increment iteration count

 iter = iter+1;

end

%--

% Set the solutions for slope b and y-axis intercept c for the straight
% line y = bx + c

%--

db = x(1,1);

b = b0+db;

c = b*(-xc)+x(2,1)+yc;

%--
% compute vector of Lagrange multipliers k and vector of residuals v

%--

k = We*(f-B*x);

v = Q*A'*k;

%--

% compute the variance factor and cofactor matrices Qxx, Qll, Qvv

%--

W = inv(Q);

vfact = (v'*W*v)/(m-u);

% compute the cofactor matrix of the adjusted quantities

Qxx = Ninv;

% compute the cofactor matrix of the adjusted quantities

Qll = Q + Q*A'*We*B*Ninv*B'*We*A*Q - Q*A'*We*A*Q;

% compute the cofactor matrix of the residuals

Qvv = Q - Qll;

%--

% Print solutions
%--

fprintf(fidout,'\n\n Solutions after %2d iterations',iter);

fprintf(fidout,'\n ==============================');

fprintf(fidout,'\n\n slope of line m = tan(theta) = % 8.6f',b');

fprintf(fidout,'\n y-axis intercept c = % 8.6f',c');
fprintf(fidout,'\n\n Vector of Lagrange multipliers k-transposed where k = We*(f-B*x)');

kk = 1;

fprintf(fidout,'\n ');

for i = 1:m

 if (kk > 6)

 fprintf(fidout,'\n ');
 kk = 1;

 end

 fprintf(fidout,'% 12.9f ',k(i,1));

 kk = kk+1;

end
fprintf(fidout,'\n\n Vector of residuals v-transposed where v = Q*At*k');

kk = 1;

fprintf(fidout,'\n ');

for i = 1:n

 if (kk > 6)

 fprintf(fidout,'\n ');
 kk = 1;

 end

 fprintf(fidout,'% 12.9f ',v(i,1));

 kk = kk+1;

end

71

fprintf(fidout,'\n\n Variance factor = %10.6e',vfact);

fprintf(fidout,'\n\n Cofactor matrix of unknowns Qxx (upper triangular part)');

fprintf(fidout,'\n The * symbol indicates new row beginning at diagonal');

for j = 1:u

 fprintf(fidout,'\n* ');
 count = 0;

 for kk = j:u

 if count > 5

 count = 0;

 fprintf(fidout,'\n ');
 end

 fprintf(fidout,'%14.6e',Qxx(j,kk));

 count = count + 1;

 end

end

fprintf(fidout,'\n\n Cofactor matrix of residuals Qvv (upper triangular part)');

fprintf(fidout,'\n The * symbol indicates new row beginning at diagonal');

for j = 1:n

 fprintf(fidout,'\n* ');

 count = 0;
 for kk = j:n

 if count > 5

 count = 0;

 fprintf(fidout,'\n ');

 end

 fprintf(fidout,'%14.6e',Qvv(j,kk));
 count = count + 1;

 end

end

fprintf(fidout,'\n\n Cofactor matrix of adjusted observations Qll (upper triangular part)');
fprintf(fidout,'\n The * symbol indicates new row beginning at diagonal');

for j = 1:n

 fprintf(fidout,'\n* ');

 count = 0;

 for kk = j:n

 if count > 5
 count = 0;

 fprintf(fidout,'\n ');

 end

 fprintf(fidout,'%14.6e',Qll(j,kk));

 count = count + 1;
 end

end

fprintf(fidout,'\n\n');

% close the output file
fclose(fidout);

72

Help message for MATLAB function linear_regression_CLS.m

>> help linear_regression_CLS

 linear_regression_CLS is a function that fits a straight line y = b*x + c

 to a set of x,y data points using Combined Least Squares that allows
 for proper consideration of variances and covariances of the x,y data.

 The function reads an ASCII textfile containing coordinate pairs (x,y)

 standard deviations (sx,sy) and covariance (sxy). In addition point

 name is included in the textfile.

 Part of an ASCII textfile is shown below

 Data for Example 2

 Serial x sd_x y sd_y covariance

 1 -40.0 1.414213562 -24.0 1.732050808 0.5

 2 -15.0 2.828427125 -24.0 2.236067978 -4.0
 3 10.0 2.828427125 -12.0 2.645751311 -3.0

 4 38.0 1.0 15.0 1.414213562 0.5

 5 67.0 2.449489743 30.0 3.464101615 1.0

 Results are written to a textfile having the same path and name as the

 data file but with the extension ".out"

>>

Data file (Example_2.txt) for MATLAB function linear_regression_CLS.m

% Data for Example 2

%

%Serial x sd_x y sd_y covariance

 1 -40.0 1.414213562 -24.0 1.732050808 0.5
 2 -15.0 2.828427125 -24.0 2.236067978 -4.0

 3 10.0 2.828427125 -12.0 2.645751311 -3.0

 4 38.0 1.0 15.0 1.414213562 0.5

 5 67.0 2.449489743 30.0 3.464101615 1.0

Output file (Example_2.out) from MATLAB function linear_regression_CLS.m

Linear Regression Using Combined Least Squares

 ==
 solution for the parameters b and c in the equation for the line of best fit

 y = b*x + c where b = tan(theta) is the slope and c is the intercept on the y-axis

 Input Data

 Serial x sx y sy sxy
 1 -40.0000 1.414214 -24.0000 1.732051 0.500000

 2 -15.0000 2.828427 -24.0000 2.236068 -4.000000

 3 10.0000 2.828427 -12.0000 2.645751 -3.000000

 4 38.0000 1.000000 15.0000 1.414214 0.500000

 5 67.0000 2.449490 30.0000 3.464102 1.000000

 there are n = 10 measurements (the x,y coordinates),

 m = 5 observation equations and u = 2 unknowns in the

 system of equations A*v + B*x = f

 System of equations and solution for first iteration
 where approximate slope b0 = 0.504672897

 Coordinates have been reduced to a centroidal system

 The * symbol indicates new row of a matrix

 Coefficient matrix A

* -0.504672897 1.000000000 0.000000000 0.000000000 0.000000000 0.000000000

 0.000000000 0.000000000 0.000000000 0.000000000
* 0.000000000 0.000000000 -0.504672897 1.000000000 0.000000000 0.000000000

 0.000000000 0.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 0.000000000 0.000000000 -0.504672897 1.000000000

73

 0.000000000 0.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

 -0.504672897 1.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

 0.000000000 0.000000000 -0.504672897 1.000000000

 Coefficient matrix B
* 52.000000000 -1.000000000

* 27.000000000 -1.000000000

* 2.000000000 -1.000000000

* -26.000000000 -1.000000000

* -55.000000000 -1.000000000
 Vector f-transposed

 -5.242990654 7.373831776 7.990654206 -4.878504673 -5.242990654

 Cofactor matrix Q

* 1.999999999 0.500000000 0.000000000 0.000000000 0.000000000 0.000000000

 0.000000000 0.000000000 0.000000000 0.000000000

* 0.500000000 3.000000001 0.000000000 0.000000000 0.000000000 0.000000000
 0.000000000 0.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 8.000000001 -4.000000000 0.000000000 0.000000000

 0.000000000 0.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 -4.000000000 5.000000002 0.000000000 0.000000000

 0.000000000 0.000000000 0.000000000 0.000000000
* 0.000000000 0.000000000 0.000000000 0.000000000 8.000000001 -3.000000000

 0.000000000 0.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 0.000000000 0.000000000 -3.000000000 7.000000000

 0.000000000 0.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

 1.000000000 0.500000000 0.000000000 0.000000000
* 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

 0.500000000 1.999999999 0.000000000 0.000000000

* 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

 0.000000000 0.000000000 6.000000001 1.000000000

* 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
 0.000000000 0.000000000 1.000000000 11.999999999

 Equivalent weight matrix We = inv(A*Q*At)

* 0.332810093 0.000000000 0.000000000 0.000000000 0.000000000

* 0.000000000 0.090293934 0.000000000 0.000000000 0.000000000

* 0.000000000 0.000000000 0.082880287 0.000000000 0.000000000

* 0.000000000 0.000000000 0.000000000 0.571421442 0.000000000
* 0.000000000 0.000000000 0.000000000 0.000000000 0.079879716

 Matrix N = Bt*We*B

* 1593.991326596 -0.659479727

* -0.659479727 1.157285472

 Vector t-transposed where t = Bt*We*f
 24.079826288 3.623330987

 Vector of solutions x-transposed where x = Ninv*t

 0.016405829 3.140236688

 Solutions after 6 iterations

 ==============================

 slope of line m = tan(theta) = 0.520869

 y-axis intercept c = -6.082465

 Vector of Lagrange multipliers k-transposed where k = We*(f-B*x)
 -0.965411704 0.891254776 0.904891143 -0.736642565 -0.094091649

 Vector of residuals v-transposed where v = Q*At*k

 0.523000101 -2.644808626 -7.278834590 6.313181624 -6.485310996 7.748227087

 0.015372954 -1.281438011 0.199964859 -1.080090370

 Variance factor = 7.650438e+00

 Cofactor matrix of unknowns Qxx (upper triangular part)

 The * symbol indicates new row beginning at diagonal

* 6.306103e-04 2.900165e-04
* 8.687864e-01

74

 Cofactor matrix of residuals Qvv (upper triangular part)

 The * symbol indicates new row beginning at diagonal

* 1.536180e-02 -7.768455e-02 -2.235833e-01 1.939214e-01 -9.600483e-02 1.147003e-01

 -1.851160e-05 1.543065e-03 2.827087e-02 -1.527023e-01

* 3.928503e-01 1.130660e+00 -9.806597e-01 4.854959e-01 -5.800389e-01 9.361308e-05
 -7.803273e-03 -1.429657e-01 7.722148e-01

* 5.201861e+00 -4.511752e+00 -3.755569e-01 4.486910e-01 -3.656917e-03 3.048284e-01

 7.243307e-03 -3.912400e-02

* 3.913196e+00 3.257334e-01 -3.891650e-01 3.171769e-03 -2.643881e-01 -6.282367e-03

 3.393358e-02
* 3.881872e+00 -4.637808e+00 -5.857898e-03 4.882948e-01 -8.019376e-02 4.331586e-01

* 5.540951e+00 6.998635e-03 -5.833828e-01 9.581028e-02 -5.175097e-01

* 6.257971e-05 -5.216435e-03 -3.611610e-03 1.950775e-02

* 4.348246e-01 3.010517e-01 -1.626101e+00

* 2.787822e-01 -1.505814e+00

* 8.133506e+00

 Cofactor matrix of adjusted observations Qll (upper triangular part)

 The * symbol indicates new row beginning at diagonal

* 1.984638e+00 5.776846e-01 2.235833e-01 -1.939214e-01 9.600483e-02 -1.147003e-01

 1.851160e-05 -1.543065e-03 -2.827087e-02 1.527023e-01
* 2.607150e+00 -1.130660e+00 9.806597e-01 -4.854959e-01 5.800389e-01 -9.361308e-05

 7.803273e-03 1.429657e-01 -7.722148e-01

* 2.798139e+00 5.117516e-01 3.755569e-01 -4.486910e-01 3.656917e-03 -3.048284e-01

 -7.243307e-03 3.912400e-02

* 1.086804e+00 -3.257334e-01 3.891650e-01 -3.171769e-03 2.643881e-01 6.282367e-03

 -3.393358e-02
* 4.118128e+00 1.637808e+00 5.857898e-03 -4.882948e-01 8.019376e-02 -4.331586e-01

* 1.459049e+00 -6.998635e-03 5.833828e-01 -9.581028e-02 5.175097e-01

* 9.999374e-01 5.052164e-01 3.611610e-03 -1.950775e-02

* 1.565175e+00 -3.010517e-01 1.626101e+00

* 5.721218e+00 2.505814e+00
* 3.866494e+00

75

MATLAB function edm.m

function edm

%
% function to simulate the processing of EDM measurements through

% a Kalman filter.

%==

% Function: edm

%
% Author:

% Rod Deakin,

% BONBEACH, VIC 3196,

% AUSTRALIA

% email: randm.deakin@gmail.com
%

% Date:

% Version 1.0 15 April 2006

% Version 1.1 29 August 2015

%

% Remarks:
% This function simulates the processing of EDM measurements

% through a Kalman filter.

%

% References:

% [1] Deakin, R.E., 2015, Least Squares and Kalman Filtering,
% Lecture Notes, September 2015

% [2] Deakin, R.E., 2006, The Kalman Filter and Surveying Applications,

% Presented at the Victorian Regional Surveying Conference,

% Mildura, 23-25 June 2006.

%

% Arrays:
% B - Design matrix, dimensions (m,n)

% corrn - array of corrections to State vector, dimensions (n,epochs)

% H - coefficient matrix of System Driving Noise, dimensions (n,u)

% I - Identity matrix, dimensions (n,n)

% K - Gain matrix, dimensions (n,m)
% meas - vector of measurements, dimensions (epochs,1)

% noise - vector of normally distributed measurement "noise" with

% a mean of zero and a standard deviation of sigma (epochs,1)

% Q - cofactor matrix of measurements, dimensions (n,n)

% Qmm - cofactor matrix of Secondary Model, dimensions (n,n)
% Qww - cofactor matrix of System Driving Noise, dimensions (n,n)

% Qxx - cofactor matrix of State vector, dimensions (n,n)

% std_xhat - vector of standard deviations of the filtered State

% T - Transition matrix, dimensions (n,n)

% U - cofactor update matrix, dimensions (n,n)

% xhat - array containing the State vector at each epoch,
% dimensions (n,epochs)

%

% Variables:

% const - a constant value

% epochs - number of epochs
% i,j,k - integer counters

% m - number of measurements at particular epoch

% n - number of parameters in the State vector 'xhat'

% u - number of parameters in the System Driving Noise vector

% std_noise - st dev of measurement noise

%==

76

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% define the Kalman filter matrices: %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 1; % number of elements in State vector

m = 1; % number of measurements at each epoch

u = 1; % number of elements in System Driving Noise vector
% Set the total number of measurement epochs

epochs = 250;

% Initialize the State vector.

xhat = zeros(n,epochs);

% Initialize the corrections to State vector.
corrn = zeros(n,epochs);

% Set the State Transition matrix T

T = eye(n);

T(1,1) = 1.0;

% Set the cofactor matrix of the System Driving Noise Qww

Qww = zeros(u,u);
Qww(1,1) = 0.0;

% Set the coefficient matrix of System Driving Noise H

H = zeros(n,u);

H(1,1) = 1.0;

% Compute cofactor matrix of Dynamic Model by propagation of variances
Qmm = H*Qww*H';

%%

% Generate some measurements with noise %%

%%

% Set the state of the random number generator (rng).
% Use rng('default') to ensure that you get the same result as Ref [1].

% Use rng('shuffle') for other results

rng('default');

% rng('shuffle');

% Set the st. dev. of measurement noise, initialise the measurement vector
% then generate the noise

std_noise = 0.010;

meas = zeros(epochs,1);

noise = std_noise .* randn(epochs,1);

% Generate the measurement vector

const = 355.420;
for k = 1:epochs

 meas(k) = const + noise(k);

end

%%%
% Set Cofactor matrices and State vector to initial values %%

%%%

% Set the cofactor matrix of the measurements Q

Q = zeros(m,m);

Q(1,1) = std_noise^2;

% Set the State cofactor matrix Qxx. This will be the filtered
% State cofactor matrix at epoch t2.

Qxx = zeros(n,n);

Qxx(1,1) = std_noise^2;

% Set the starting estimate of the State vector for Epoch 1

% This will be the filtered Sate at epoch t2
xhat(1,1) = meas(1,1);

% Initialize the Gain matrix

K = zeros(n,m);

77

%%

% Start the Kalman Filter at epoch t2 %%

%%

for k = 2:epochs

 % Compute the predicted State vector.

 xhat(:,k) = T*xhat(:,k-1);
 % Compute the predicted State cofactor matrix

 Qxx = T*Qxx*T' + Qmm;

 % Set the elements of the design matrix B

 B = zeros(m,n);

 B(1,1) = -1;
 % Compute the Gain matrix K

 K = Qxx*B'/(Q + B*Qxx*B');

 % Compute corrections to predicted State

 corrn(:,k) = K*(-meas(k) - B*xhat(:,k));

 % Compute the filtered State vector

 xhat(:,k) = xhat(:,k) + corrn(:,k);
 % Compute the cofactor update matrix

 I = eye(n);

 U = I - K*B;

 % Compute the filtered State cofactor matrix

 Qxx = U*Qxx;
 std_xhat(k) = sqrt(Qxx(1,1));

 % Print the State vector, corrections and filtered State cofactor matrix

 fprintf('\n\nEpoch = %3d, measurement = %8.4f',k,meas(k));

 fprintf('\nFiltered State Corrn Filtered State cofactor matrix Qxx');

 for i=1:u

 fprintf('\n %9.4f %10.4f ',xhat(i,k),corrn(i,k));
 for j=1:u

 fprintf('%12.9f',Qxx(i,j));

 end

 end

end
fprintf('\n\n');

%%%%%%%%%%%%%%%%%%%%%%%%%

% End of Kalman filter %%

%%%%%%%%%%%%%%%%%%%%%%%%%

% Figure 1: create a figure window with two plots
figure(1);

clf;

subplot(2,1,1);

hold on;

grid on;
box on;

plot(meas,'k.');

plot(xhat,'k');

title('Kalman Filter estimate');

ylabel('state [m]');

subplot(2,1,2);

hold on;

grid on;

box on;

plot(std_xhat,'k');
title('Standard deviation of estimate');

xlabel('epoch [s]');

ylabel('std [m]');

% Figure 2: Plot of Kalman Filter estimate

figure(2);
clf;

hold on;

grid on;

plot(meas,'k.');

plot(xhat,'k');
hold off;

78

title('Kalman Filter estimate');

xlabel('epoch [s]');

ylabel('state [m]');

% Figure 3: Plot of st. dev. of Kalman Filter estimate

figure(3);
clf;

hold on;

grid on;

plot(std_xhat,'k');

hold off;
title('Standard deviation of estimate');

xlabel('epoch [s]');

ylabel('std [m]');

Output from MATLAB function edm.m

>> edm

Epoch = 2, measurement = 355.4383

Filtered State Corrn Filtered State cofactor matrix Qxx

 355.4319 0.0065 0.000050000

Epoch = 3, measurement = 355.3974

Filtered State Corrn Filtered State cofactor matrix Qxx

 355.4204 -0.0115 0.000033333

Epoch = 4, measurement = 355.4286

Filtered State Corrn Filtered State cofactor matrix Qxx

 355.4224 0.0021 0.000025000

Epoch = 5, measurement = 355.4232

Filtered State Corrn Filtered State cofactor matrix Qxx

 355.4226 0.0002 0.000020000

:

:

:

Epoch = 248, measurement = 355.4360

Filtered State Corrn Filtered State cofactor matrix Qxx

 355.4199 0.0001 0.000000403

Epoch = 249, measurement = 355.4210

Filtered State Corrn Filtered State cofactor matrix Qxx

 355.4199 0.0000 0.000000402

Epoch = 250, measurement = 355.4204

Filtered State Corrn Filtered State cofactor matrix Qxx

 355.4199 0.0000 0.000000400

79

MATLAB function kalship3.m

function kalship3(filename)

%
% kalship3 This function implements a Kalman Filter to estimate the

% POSITION and VELOCITY of a ship in a navigation channel.

% The observations are distances to the ship at regular time intervals

% from three known locations.

%

% e.g., kalship3('d:\projects\kalman\exercise\kalshipdata3.txt');

%==

% Function: kalship3

%

% Author:
% Rod Deakin,

% BONBEACH, VIC 3196,

% AUSTRALIA

% email: randm.deakin@gmail.com

%

% Date:
% Version 1.0 17 April 2006

% Version 1.1 29 August 2015

%

% Remarks:

% This function implements a Kalman Filter to estimate the POSITION and
% VELOCITY of a ship moving at a near constant velocity in a channel.

% The observations are horizontal distances to three fixed stations

% taken at regular time intervals.

% The observations are contained in an ASCII data file, an example of

% which is shown below (d:\projects\kalman\Kalshipdata3.txt)

%
%-----start of data file d:\projects\kalman\exercise\Kalshipdata3.txt------

%

% Kalman Filter Navigation problem

%

% A ship is moving at a constant velocity with distance measurements
% every 60 seconds to three shore-based beacons A, B and C.

%

% Data

% Distances to beacons

% Epoch A B C
% 1 4249.7 7768.6 7721.1

% 2 3876.1 7321.4 7288.5

% 3 3518.4 6872.2 6857.6

% : : : :

% : : : :

% : : : :
% 19 5366.4 1959.6 2819.7

% 20 5785.0 2182.8 3023.5

%----------------------end of data file--------------------------------

%

% References:
% [1] Deakin, R.E., 2015, Least Squares and Kalman Filtering,

% Lecture Notes, September 2015.

% [2] Deakin, R.E., 2006, The Kalman Filter and Surveying Applications,

% Presented at the Victorian Regional Surveying Conference, Mildura,

% 23-25 June 2006.

%
% Arrays:

% B - Design matrix, dimensions (m,n)

% Distance - vector of distances from start at each epoch

% Ef - vector of east coords of fixed stations (beacons)

% epoch - vector of epoch numbers (integers)
% H - coefficient matrix of System Driving Noise, dimensions (n,u)

% Heading - vector of headings (bearings from north) at each epoch

80

% I - Identity matrix, dimensions (n,n)

% K - Gain matrix, dimension (n,m)

% meas - array of measured distances from the ship to the beacons (metres)

% Nf - vector of north coords of fixed stations (beacons)

% Q - cofactor matrix of measurements, dimension is (m,m)

% Qmm - cofactor matrix of Dynamic Model, dimensions (n,n)
% Qww - cofactor matrix of System Driving Noise, dimensions (u,u)

% Qxx - cofactor matrix of State vector, dimensions (n,n)

% T - Transition matrix, dimensions (n,n)

% U - cofactor Update matrix, dimensions (n,n)

% Velocity - vector of velocities at each epoch
% xhat - State vector, dimension is (n,epochs)

%

% Variables

% cj,dj - distance coefficients for observation j

% d - distance

% d2 - distance squared
% dt - time difference in seconds between epochs

% dE,dN - difference in east and north coordinates

% j,k - integer counters

% m - number of measurements at each epoch

% n - number of parameters in the State vector 'xhat'
% s2_aE - variance of east acceleration (m^2/s^4)

% s2_aN - variance of north acceleration (m^2/s^4)

% s2_Dist - variance of observed distance(m^2)

% u - number of elements in System Driving Noise vector

% vE,vN - east and north velocities

%==

%%%

% Set the coordinates of the fixed stations, the beacons A, B and C. %%

%%%

Ef = [10000 13880 15550];
Nf = [10000 11250 7160];

%%

% Read in the data from a file using function textread. %%

%%

% Read the epoch number into array 'epoch' and the distances to the
% three beacons into matrix 'meas'. Distances to beacons A, B and C

% are in matrix 'meas' in columns 1, 2 and 3

[epoch,meas(:,1),meas(:,2),meas(:,3)]=textread(filename,'%d %f %f %f','headerlines',8);

%%
% Set estimates of variances of measurements and System Driving Noise %%

%%

% Set the estimate of the variance of measurements.

s2_meas = 1.0; % variance of distance (m2)

% Set the estimates of variances of System Driving Noise.

s2_aE = 0.017;
s2_aN = 0.017;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set the Epoch update rate. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dt = 60; % update rate in seconds of time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define the Kalman filter matrices. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 4; % number of elements in State vector
m = 3; % number of measurements at each epoch

u = 2; % number of elements in System Driving Noise vector

% The State vector has 4 elements; the east and north cordinates E,N, and

% the east and north velocities vE,vN.
% There are three measurements at each epoch (to beacons A, B and C).

81

% There are two elements in the system driving noise vector (accel. East

% and accel. North).

% Determine the number of measurement epochs.

epochs = length(epoch);

% Initialize the State vector.
xhat = zeros(n,epochs);

% Initialize the corrections to State vector.

corrn = zeros(n,epochs);

% Set the State Transition matrix T

T = eye(n);
T(1,3) = dt;

T(2,4) = dt;

% Set the cofactor matrix of the measurements Q

Q = zeros(m,m);

for m = 1:m

 Q(m,m) = s2_meas; % diagonal elements of Q = variance of distance
end

% Set the cofactor matrix of the System Driving Noise Qww

Qww = zeros(u,u);

Qww(1,1) = s2_aE;

Qww(2,2) = s2_aN;
% Set the coefficient matrix of System Driving Noise H

H = zeros(n,u);

H(1,1) = (dt^2)/2;

H(2,2) = H(1,1);

H(3,1) = dt;

H(4,2) = H(3,1);
% Compute cofactor matrix of Dynamic Model by propagation of variances

Qmm = H*Qww*H';

% Set the starting estimate of the State vector.

% This will be the filtered Sate at epoch t2.

E1 = 7875.0;
N1 = 6319.392;

vE = 7;

vN = 3;

% Epoch t1

xhat(1,1) = E1;
xhat(2,1) = N1;

xhat(3,1) = vE;

xhat(4,1) = vN;

% Set the State cofactor matrix Qxx.

% This will be the filtered State cofactor matrix at epoch t2.
Qxx = zeros(n,n);

Qxx(1,1) = 20.0;

Qxx(2,2) = 20.0;

Qxx(3,3) = 0.5;

Qxx(4,4) = 0.5;

% Initialize the Gain matrix
K = zeros(n,m);

%%%

% Start the Kalman Filter at epoch t2. %%

%%%
for k = 2:epochs

 % Compute the predicted State vector.

 xhat(:,k) = T*xhat(:,k-1);

 % Compute the predicted State cofactor matrix

 Qxx = T*Qxx*T' + Qmm;

 % Compute the Design matrix B
 B = zeros(m,n);

 f = zeros(m,1);

 for j = 1:m

 % coordinate differences Pi to Pk

 dE = xhat(1,k)-Ef(j);
 dN = xhat(2,k)-Nf(j);

82

 % Computed distance Pi to Pk

 d2 = dE^2 + dN^2;

 d = sqrt(d2);

 % Distance coefficients

 cj = dN/d;

 dj = dE/d;
 % Set the elements of B

 B(j,1) = -dj;

 B(j,2) = -cj;

 % Compute the numeric terms (computed - observed)

 f(j,1) = d - meas(k,j);
 end

 % Compute the Gain matrix K

 K = Qxx*B'/(Q + B*Qxx*B');

 % Compute corrections to predicted State

 corrn(:,k) = K*f;

 % Compute the filtered State vector
 xhat(:,k) = xhat(:,k) + corrn(:,k);

 % Compute the cofactor update matrix

 I = eye(n);

 U = I - K*B;

 % Compute the filtered State cofactor matrix
 Qxx = U*Qxx;

 % Print the State vector, corrections and filtered State cofactor matrix

 fprintf('\n\nepoch = %3d',k);

 fprintf('\nFiltered State Corrns Filtered State cofactor matrix Qxx');

 for i=1:n

 fprintf('\n %9.3f %10.3f ',xhat(i,k),corrn(i,k));
 for j=1:n

 fprintf('%10.6f',Qxx(i,j));

 end

 end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%

% End of Kalman filter. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('\n\n');

% Compute distance from start and Velocity

% and get corrections to east, north, velocity east and

% velocity north from the array of corrections.

Distance = zeros(epochs,1);
Velocity = zeros(epochs,1);

Heading = zeros(epochs,1);

corrnE = zeros(epochs,1);

corrnN = zeros(epochs,1);

corrnvE = zeros(epochs,1);

corrnvN = zeros(epochs,1);

d2r = 180/pi; % degree to radian conversion factor d2r = 57.29577951..

for k=1:epochs

 if k >1

 % coordinate differences P(k-1) to P(k)
 dE = xhat(1,k)-xhat(1,k-1);

 dN = xhat(2,k)-xhat(2,k-1);

 % Computed distance P(k-1) to P(k)

 d = sqrt(dE^2 + dN^2);

 Distance(k,1) = Distance(k-1,1) + d;

 end
 angle = atan2(xhat(3,k),xhat(4,k))*d2r;

 if angle < 0

 angle = angle + 360;

 end

 Velocity(k,1) = sqrt(xhat(3,k)^2 + xhat(4,k)^2);
 Heading(k,1) = angle;

83

 corrnE(k,1) = corrn(1,k);

 corrnN(k,1) = corrn(2,k);

 corrnvE(k,1) = corrn(3,k);

 corrnvN(k,1) = corrn(4,k);

end

% Print the filtered values

fprintf('Filtered Values');

fprintf('\nEpoch Distance Velocity Heading');

for k=1:epochs
 fprintf('\n%3d %11.3f %8.3f %8.3f',k,Distance(k,1),Velocity(k,1),Heading(k,1));

end

fprintf('\n\n');

%--------------------------
% create plot of velocities

%--------------------------

figure(1);

clf;

grid on;
plot(epoch,Velocity,'bo-');

title('Kalman Filter Velocities');

xlabel('Epoch');

ylabel('Velocity (m/s)');

%---
% create plot of East coordinate corrections

%---

figure(2);

clf;

grid on;
plot(epoch,corrnE,'bo-');

title('Kalman Filter corrections to East coords');

xlabel('Epoch');

ylabel('Corrections (m)');

%---
% create plot of North coordinate corrections

%---

figure(3);

clf;

grid on;
plot(epoch,corrnN,'bo-');

title('Kalman Filter corrections to North coords');

xlabel('Epoch');

ylabel('Corrections (m)');

Help message for MATLAB function kalship3.m

>> help kalship3

 kalship3 This function implements a Kalman Filter to estimate the
 POSITION and VELOCITY of a ship in a navigation channel.

 The observations are distances to the ship at regular time intervals

 from three known locations.

 e.g., kalship3('d:\projects\kalman\exercise\kalshipdata3.txt');

>>

84

Data file (d:\projects\kalman\exercise\Kalshipdata3.txt) for MATLAB function kalship3.m

% Kalman Filter Navigation problem

%
% A ship is moving at a constant velocity with distance measurements

% every 60 seconds to three shore-based beacons A, B and C.

%

% Data

% Distances to beacons
% Epoch A B C

 1 4249.7 7768.6 7721.1

 2 3876.1 7321.4 7288.5

 3 3518.4 6872.2 6857.6

 4 3193.3 6426.0 6429.1

 5 2903.6 5982.6 6009.7
 6 2664.0 5543.2 5596.6

 7 2490.9 5107.7 5191.5

 8 2392.9 4678.9 4797.1

 9 2383.2 4253.4 4417.8

 10 2463.0 3841.7 4050.9
 11 2623.2 3435.6 3709.9

 12 2849.0 3054.2 3395.8

 13 3126.7 2692.9 3119.4

 14 3446.9 2366.6 2891.1

 15 3793.4 2096.4 2724.4

 16 4166.0 1900.6 2630.9
 17 4552.2 1804.7 2610.2

 18 4956.2 1824.8 2677.4

 19 5366.4 1959.6 2819.7

 20 5785.0 2182.8 3023.5

Output from MATLAB function kalship3.m

>> kalship3('d:\projects\kalman\exercise\kalshipdata3.txt');

epoch = 2

Filtered State Corrns Filtered State cofactor matrix Qxx

 8289.594 -5.406 1.009225 -0.797965 0.033097 -0.026169

 6521.882 22.490 -0.797965 1.439797 -0.026169 0.047217

 6.823 -0.177 0.033097 -0.026169 0.506780 -0.000858

 3.738 0.738 -0.026169 0.047217 -0.000858 0.507243

epoch = 3

Filtered State Corrns Filtered State cofactor matrix Qxx

 8705.780 6.823 0.926924 -0.643621 0.030398 -0.021105

 6727.944 -18.189 -0.643621 1.218371 -0.021105 0.039955

 7.046 0.224 0.030398 -0.021105 0.494715 -0.004015

 3.141 -0.596 -0.021105 0.039955 -0.004015 0.496822

epoch = 4

Filtered State Corrns Filtered State cofactor matrix Qxx

 9124.759 -3.808 0.863463 -0.498398 0.028327 -0.016346

 6928.604 12.198 -0.498398 1.011477 -0.016346 0.033180

 6.922 -0.125 0.028327 -0.016346 0.483077 -0.006336

 3.541 0.400 -0.016346 0.033180 -0.006336 0.486133

85

epoch = 5

Filtered State Corrns Filtered State cofactor matrix Qxx

 9540.095 0.042 0.798512 -0.363666 0.026205 -0.011929

 7132.756 -8.319 -0.363666 0.856483 -0.011929 0.028105

 6.923 0.001 0.026205 -0.011929 0.471881 -0.007919

 3.268 -0.273 -0.011929 0.028105 -0.007919 0.475282

:

:

:

epoch = 17

Filtered State Corrns Filtered State cofactor matrix Qxx

 14531.436 -5.091 1.097853 0.503116 0.036151 0.016564

 9565.143 0.684 0.503116 0.809750 0.016567 0.026660

 6.827 -0.168 0.036151 0.016567 0.373179 0.001640

 3.346 0.023 0.016564 0.026660 0.001640 0.377365

epoch = 18

Filtered State Corrns Filtered State cofactor matrix Qxx

 14950.377 9.319 0.955699 0.439824 0.031474 0.014481

 9770.483 4.566 0.439824 0.822675 0.014483 0.027090

 7.134 0.307 0.031474 0.014483 0.368845 0.003650

 3.497 0.150 0.014481 0.027090 0.003650 0.371765

epoch = 19

Filtered State Corrns Filtered State cofactor matrix Qxx

 15366.544 -11.869 0.732074 0.288579 0.024112 0.009501

 9973.570 -6.708 0.288579 0.820826 0.009502 0.027033

 6.743 -0.391 0.024112 0.009502 0.364017 0.005200

 3.276 -0.221 0.009501 0.027033 0.005200 0.366470

epoch = 20

Filtered State Corrns Filtered State cofactor matrix Qxx

 15781.273 10.148 0.598119 0.158080 0.019704 0.005204

 10175.278 5.167 0.158080 0.847313 0.005203 0.027911

 7.077 0.334 0.019704 0.005203 0.358551 0.006055

 3.446 0.170 0.005204 0.027911 0.006055 0.361445

Filtered Values

Epoch Distance Velocity Heading

 1 0.000 7.616 66.801

 2 461.400 7.779 61.286

 3 925.806 7.715 65.975

 4 1390.357 7.775 62.905

 5 1853.155 7.656 64.729

 6 2315.773 7.765 63.208

 7 2778.387 7.660 65.206

 8 3240.322 7.741 62.817

 9 3703.373 7.698 64.889

 10 4165.683 7.713 63.805

 11 4631.259 7.805 63.717

 12 5091.795 7.550 64.711

 13 5555.396 7.900 63.076

 14 6020.782 7.618 64.761

 15 6481.164 7.728 63.223

 16 6945.300 7.744 64.584

 17 7405.657 7.603 63.888

 18 7872.215 7.945 63.889

 19 8335.291 7.497 64.090

 20 8796.471 7.872 64.039

>>

86

MATLAB function global_warming_filter.m

function glogbal_warming_filter

%
% function to use a Kalman Filter to estimate the signal in a sequence of

% temperature anomalies. Two data files are available:

% (1) Global Land-Ocean Temperature Anomalies (deg C) reative to

% 1951-1980 average

% d:\temp\Anomalies_NASA_1880_2014.txt

% and
% (2) Contiguous 48 U.S. Surface Air Temperature Anomalies (deg C)

% relative to 1951-1980 average.

% d:\temp\Anomalies_US_Surface_Air_Temp_1880_2014.txt

%

% Both data sets are derived from datasets available from the National
% Aeronautics and Space Administration (NASA) website at:

% http://data.giss.nasa.gov/gistemp/ under Datasets & Images

%==

% Function: global_warming_filter

%
% Author:

% Rod Deakin,

% BONBEACH, VIC, 3196

% AUSTRALIA

% email: randm.deakin@gmail.com
%

% Date:

% Version 1.0 06 April 2015

% Version 1.1 01 September 2015

% Moving Average filter added

%
% Remarks:

% This function uses a Kalman Filter to estimate the signal in global

% warming temperature anomalies.

%

% References:
% [1] Deakin, R.E., 2015, Least Squares and Kalman Filtering,

% Lecture Notes, September 2015.

% [2] Deakin, R.E., 2006, The Kalman Filter and Surveying Applications,

% Lecture Notes, School of Mathematical and Geospatial Sciences,

% RMIT University, June 2006, 30 pages.
% [3] Deakin, R.E., 2006, The Kalman Filter: A Look Behind the Scene,

% Presented at the Regional Surveying Conference, Mildura, 23-25

% June 2006, 12 pages.

%

% Arrays:

% Anomaly - vector of temperature anomalies
% B - Design matrix, dimensions (m,n)

% b5 - 5-element vector for Moving Average filter

% corrn - array of corrections to State vector, dimensions (n,epochs)

% H - coefficient matrix of System Driving Noise, dimensions (n,u)

% I - Identity matrix, dimensions (n,n)
% K - Gain matrix, dimensions (n,m)

% meas - vector of measurements, dimensions (epochs,1)

% Q - cofactor matrix of measurements, dimensions (n,n)

% Qmm - cofactor matrix of Secondary Model, dimensions (n,n)

% Qww - cofactor matrix of System Driving Noise, dimensions (n,n)

% Qxx - cofactor matrix of State vector, dimensions (n,n)
% std_xhat - vector of standard deviations of the filtered State

% T - Transition matrix, dimensions (n,n)

% Temp - vector of global temperatures

% U - cofactor update matrix, dimensions (n,n)

% xhat - array containing the State vector at each epoch,
% dimensions (n,epochs)

% Year - vector of years

87

% y5 - vector of values for a 5-year moving average filter,

% dimensions(epochs,1)

%

% Variables:

% epochs - number of years

% i,j,k - integer counters
% m - number of measurements at particular epoch

% n - number of parameters in the State vector 'xhat'

% std_meas - standard deviation of measurements

% u - number of parameters in the System Driving Noise vector

%==

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Read data from text file %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%---
% 1. Call the User Interface (UI) to choose the input data file name

% 2. Concatenate strings to give the path and file name of the input file

% 3. Strip off the extension from the file name to give the rootName

% 4. Add extension ".out" to rootName to give the output filename

% 5. Concatenate strings to give the path and file name of the output file
%---

filepath = strcat('d:\temp\','*.txt');

[infilename,inpathname] = uigetfile(filepath);

infilepath = strcat(inpathname,infilename);

rootName = strtok(infilename,'.');

outfilename = strcat(rootName,'.out');
outfilepath = strcat(inpathname,outfilename);

%--

% 1. Load the data into an array whose name is the rootName

% 2. set fileTemp = rootName
% 3. Copy columns of data into individual arrays

%--

load(infilepath);

fileTemp = eval(rootName);

Year = fileTemp(:,1);

Anomaly = fileTemp(:,2);

% determine the number of measurement epochs

epochs = length(Year);

% Set vector of Global Surface Temperatures where the Global Surface
% Temperature = Anomaly + 14.0 and 14.0 is the mean of the Temperatures for

% the period 1951-1980.

Temp = Anomaly + 14.0; % NASA dataset

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define the Kalman filter matrices %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = 1; % number of elements in State vector

m = 1; % number of measurements at each epoch

u = 1; % number of elements in System Driving Noise vector

% Initialize the State vector.
xhat = zeros(n,epochs);

% Initialize the corrections to State vector.

corrn = zeros(n,epochs);

% Set the State Transition matrix T

T = eye(n);

T(1,1) = 1.0;
% Set the cofactor matrix of the System Driving Noise Qww

Qww = zeros(u,u);

Qww(1,1) = 0.01;

% Set the coefficient matrix of System Driving Noise H

H = zeros(n,u);
H(1,1) = 1.0;

88

% Compute cofactor matrix of Dynamic Model by propagation of variances

Qmm = H*Qww*H';

% Initialize vector of measurements

meas = zeros(epochs,1);

% Set the measurement vector to either Temperatures or Temp Anomalies

%meas = Temp;
meas = Anomaly;

% Set the standard deviation of measurements

std_meas = sqrt(0.5);

%%%
% Set Cofactor matrices and State vector to initial values %%

%%%

% Set the cofactor matrix of the measurements Q

Q = zeros(m,m);

Q(1,1) = std_meas^2;

% Set the State cofactor matrix Qxx. This will be the filtered
% State cofactor matrix at epoch t2.

Qxx = zeros(n,n);

Qxx(1,1) = std_meas^2;

% Set the starting estimate of the State vector for Epoch 1

% This will be the filtered Sate at epoch t2
xhat(1,1) = meas(1,1);

% Initialize the Gain matrix

K = zeros(n,m);

%%

% Start the Kalman Filter at epoch t2 %%
%%

for k = 2:epochs

 % Compute the predicted State vector.

 xhat(:,k) = T*xhat(:,k-1);

 % Compute the predicted State cofactor matrix
 Qxx = T*Qxx*T' + Qmm;

 % Set the elements of the design matrix B

 B = zeros(m,n);

 B(1,1) = -1;

 % Compute the Gain matrix K

 K = Qxx*B'/(Q + B*Qxx*B');
 % Compute corrections to predicted State

 corrn(:,k) = K*(-meas(k) - B*xhat(:,k));

 % Compute the filtered State vector

 xhat(:,k) = xhat(:,k) + corrn(:,k);

 % Compute the cofactor update matrix
 I = eye(n);

 U = I - K*B;

 % Compute the filtered State cofactor matrix

 Qxx = U*Qxx;

 std_xhat(k) = sqrt(Qxx(1,1));

 % Print the State vector, corrections and filtered State cofactor matrix

 fprintf('\n\nEpoch = %3d, Year = %4d, measurement = %8.4f',k,Year(k),meas(k));

 fprintf('\nFiltered State Corrn Filtered State cofactor matrix Qxx');

 for i=1:u

 fprintf('\n %9.4f %10.4f ',xhat(i,k),corrn(i,k));
 for j=1:u

 fprintf('%12.9f',Qxx(i,j));

 end

 end

end

%%%%%%%%%%%%%%%%%%%%%%%%%
% End of Kalman filter %%

%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('\n\n');

89

%%%%%%%%%%%%%%

% plot data %%

%%%%%%%%%%%%%%

% Figure 1: Plot of Temperature Anomalies

figure(1);
clf(1);

hold on;

grid on;

box on;

% set scaling for the x- and y-axes
axis([1870 2020 -1.5 1.5])

%axis square;

% plot the data

plot(Year,Anomaly,'bo','MarkerSize',3);

% anotate the plot

%title('Global Land-Ocean Temperature Anomalies 1880-2014')
title('Contiguous 48 U.S. Surface Air Temperature Anomalies 1880-2014')

xlabel('Year');

ylabel('Temp Anomaly (deg C) relative to 1951-1980 average');

% Figure 2: create a figure window with two plots. The upper plot shows
% the measurements and the filtered state. The lower plot shows the

% standard deviation of the filtered state

figure(2);

clf(2);

subplot(2,1,1);

hold on;
grid on;

box on;

plot(meas,'k.','MarkerSize',5);

plot(xhat,'k');

title('Kalman Filter estimate');
xlabel('epoch');

ylabel('state [deg C]');

subplot(2,1,2);

hold on;

grid on;
box on;

plot(std_xhat,'k');

title('Standard deviation of estimate');

xlabel('epoch');

ylabel('std [deg C]');

% Figure 3: Plot of Kalman Filter estimate

figure(3);

clf(3);

hold on;

grid on;
box on;

% set scaling for the x- and y-axes

axis([1870 2020 -1.5 1.5])

% plot the data
plot(Year,Anomaly,'bo','MarkerSize',3);

plot(Year,xhat,'k');

% anotate the plot

%title('Global Land-Ocean Temperature Anomalies 1880-2014')

title({'Contiguous 48 U.S. Surface Air Temperature Anomalies 1880-2014';'with signal (Kalman

Filter)'});
xlabel('Year');

ylabel('Temp Anomaly (deg C) relative to 1951-1980 average');

90

% Figure 4: Plot of standard deviation of Kalman Filter estimate

figure(4);

clf(4);

hold on;

grid on;

plot(std_xhat,'k');
hold off;

title('Standard deviation of estimate');

xlabel('epoch');

ylabel('std [deg C]');

%%%%%%%%%%%%%%%%%%%%%%%%%%

% Moving Average Filter %%

%%%%%%%%%%%%%%%%%%%%%%%%%%

% 5-year moving average

b5 = [1/5 1/5 1/5 1/5 1/5];

y5 = filter(b5,1,Anomaly);

% centre the averages about mid-values

for k = 3:epochs-2

 y5(k) = y5(k+2);

end
y5(1) = 0;

y5(2) = 0;

y5(epochs-1) = 0;

y5(epochs) = 0;

% Figure 5: Moving average filter
figure(5);

clf(5);

hold on;

grid on;

box on;
% set scaling for the x- and y-axes

axis([1870 2020 -1.5 1.5])

% plot the data

plot(Year,Anomaly,'bo','MarkerSize',3);

% plot centred 5-year moving average

plot(Year(3:epochs-2),y5(3:epochs-2),'k-','LineWidth',1);
% anotate the plot

title({'Contiguous 48 U.S. Surface Air Temperature Anomalies 1880-2014';'with centred 5-Year

Moving Average'});

xlabel('Year');

ylabel('Temp Anomaly (deg C) relative to 1951-1980 average');

Help message for MATLAB function linear_regression_CLS.m

>> help global_warming_filter

 function to use a Kalman Filter to estimate the signal in a sequence of

 temperature anomalies. Two data files are available:

 (1) Global Land-Ocean Temperature Anomalies (deg C) reative to

 1951-1980 average

 d:\temp\Anomalies_NASA_1880_2014.txt

 and

 (2) Contiguous 48 U.S. Surface Air Temperature Anomalies (deg C)

 relative to 1951-1980 average.

 d:\temp\Anomalies_US_Surface_Air_Temp_1880_2014.txt

 Both data sets are derived from datasets available from the National

 Aeronautics and Space Administration (NASA) website at:

 http://data.giss.nasa.gov/gistemp/ under Datasets & Images

>>

91

Data file (d:\temp\Anomalies_US_Surface_Air_Temp_1880_2014.txt)

for MATLAB function global_warming_filter.m

%Contiguous 48 U.S. Surface Air Temperature Anomaly (C)
%--

%Year Annual_Mean

1880 -0.4656

1881 0.0693

1882 -0.0067

1883 -0.8181
1884 -0.6041

1885 -0.6516

1886 -0.4563

1887 -0.2135

:
:

:

2010 0.5946

2011 0.6747

2012 1.8681

2013 0.2093
2014 0.2816

% compiled from http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.D.txt

Output from MATLAB function global_warming_filter.m

>> global_warming_filter

Epoch = 2, Year = 1881, measurement = 0.0693

Filtered State Corrn Filtered State cofactor matrix Qxx
 -0.1955 0.2701 0.252475248

Epoch = 3, Year = 1882, measurement = -0.0067

Filtered State Corrn Filtered State cofactor matrix Qxx

 -0.1305 0.0650 0.172120504

Epoch = 4, Year = 1883, measurement = -0.8181

Filtered State Corrn Filtered State cofactor matrix Qxx

 -0.3141 -0.1836 0.133495843

:

:
:

Epoch = 133, Year = 2012, measurement = 1.8681

Filtered State Corrn Filtered State cofactor matrix Qxx

 0.7864 0.1642 0.065887234

Epoch = 134, Year = 2013, measurement = 0.2093

Filtered State Corrn Filtered State cofactor matrix Qxx

 0.7104 -0.0760 0.065887234

Epoch = 135, Year = 2014, measurement = 0.2816

Filtered State Corrn Filtered State cofactor matrix Qxx
 0.6539 -0.0565 0.065887234

